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Abstract

A composition of a positive integer n consists of an ordered se-
quence of positive integers whose sum is n. A palindromic composi-
tion is one for which the sequence is the same from left to right as
from right to left. This paper shows various ways of generating all
palindromic compositions, counts the number of times each integer
appears as a summand among all the palindromic compositions of n,
and describes several patterns among the numbers generated in the
process of enumeration.
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1 Introduction

A composition of a positive integer n consists of an ordered sequence of
positive integers whose sum is n. It is well-known that there are 2n−1

compositions of n (see for example [3]). A palindromic composition is one
for which the sequence is the same from left to right as from right to left.
For the remainder of this paper we will refer to such compositions by the
short-hand term palindrome. Compositions can also be thought of as tilings
of a 1 x n board, with 1 x k tiles of integer length k, 1 ≤ k ≤ n. In this
setting, a composition of n with j summands or parts is created by making
j − 1 vertical cuts on the 1 x n board. This viewpoint allows for easy
combinatorial proofs of certain facts and will be used when advantageous.

The question concerning the number of times a particular summand
k occurs in all compositions of n has been answered by one of the authors
in [3]. Furthermore, Chinn et al. showed that the number of times k ap-
pears as a summand in compositions of n is equal to the number of times
k +1 appears in compositions of n+1. Alladi and Hoggatt enumerated the
number of times the summands 1 and 2 occur in all compositions and palin-
dromes containing only these two summands [1]. Grimaldi has investigated
compositions with odd summands, and expressed the number of times a
1 occurs in all compositions of n with odd summands as a specific linear
combination of Lucas and Fibonacci numbers [4]. Furthermore, the occur-
rence of the number 2k + 1 in all compositions of n with odd summands
equals the number of 1s in all compositions of n− 2k with odd summands.
We will show a somewhat similar result for palindromes, namely that the
number of times the summand k occurs in a palindrome of a specific size
can sometimes be reduced to the number of 1s in all palindromes of a cer-
tain smaller size. In addition, the sequence of values of occurences of 1s
in palindromes of even and odd values of n, respectively, matches known
sequences (A057711 and A001792 in [7]).

Section 2 contains notation and a few basic observations that will
be used throughout the rest of the paper. In Section 3, we describe two
methods of generating palindromes, and give a formula for the total number
of palindromes. Section 4 contains explicit formulas for Rn(k), the number
of times the number k occurs as a summand among all the palindromes of
n. We conclude in Sections 5 and 6 by discussing the various patterns found
within the table of values for Rn(k), and give combinatorial or analytical
proofs for these patterns.
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2 Notation and General Observations

Before deriving specific results, we will define our notation, and state a
remark which will be used in later sections. Let

Cn = the number of compositions of n, where C0 := 1

Pn = the number of palindromes of n, where P0 := 1

Rn(k) = the number of repetitions of the integer k in all
palindromes of n.

Remark 1 1. A palindrome of an odd integer n always has an odd num-
ber of summands, and the middle summand must be an odd integer.

2. A palindrome of an even integer n can have an odd number of sum-
mands with an even summand in the center or an even number of
summands and no middle summand.

We will refer to a palindrome of the latter type as having an even split.

3 Generating Palindromes

Palindromes can be created in a number of ways, each of which is useful
for some of the proofs in this section. In addition, these different creation
methods illustrate the multiple ways of thinking about palindromes. The
first method creates palindromes using compositions, whereas the second
method creates palindromes recursively. We start by describing the explicit
method of palindrome creation, which consists of combining all possible
middle summands with a composition of an appropriate positive integer
to the left, and with its mirror image on the right. This method will be
referred to as the Explicit Palindrome Creation Method (EPCM):

To create a palindrome of n = 2k (n = 2k + 1), combine the
middle summand m = 2l (m = 2l + 1), for l = 0, ..., k, with a
composition of n−m

2 = k − l on the left and its mirror image on
the right. For those palindromes that result from l = 0, delete
the middle summand of 0.

The second method creates palindromes recursively; to seed this method,
we define a palindrome of n = 0, namely 0. We will refer to this method as
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the Recursive Palindrome Creation Method (RPCM):

Before applying the algorithm, create a middle summand for
palindromes with an even number of summands by replacing the
“+” sign in the center of the palindrome by “+0+”. (This arti-
fice simplifies the algorithm and allows the treatment of palin-
dromes having an odd and even number of summands, respec-
tively, using the same instructions.)

1. Creating palindromes of 2k + 1 from those of 2k:
Increase the middle summand by 1.

2. Creating palindromes of 2k + 2 from those of 2k:
Create one palindrome by increasing the middle summand
by 2, and another one by replacing the middle summand
m by

(
m
2 + 1

)
+

(
m
2 + 1

)
.

Lemma 2 Both the EPCM and the RPCM create all palindromes of n
for n ≥ 1.

Proof: Clearly, the EPCM creates all palindromes of n, without dupli-
cates or omissions. For the RPCM, we need to work a little harder to
show that indeed no duplicates are created, and also that all possible palin-
dromes are created by the algorithm. For easier readability we will refer to
the middle summand(s) of a palindrome of n as mn. Furthermore, we will
only concentrate on the middle summands, as all other summands remain
unchanged when creating the palindromes of 2k+1 and 2k+2, respectively,
from those of 2k.
• Palindromes of 2k + 1: Every palindrome of 2k + 1 with middle sum-
mand m2k + 1 corresponds to a palindrome of 2k whose middle summand
is m2k + 1 − 1. (If m2k + 1 = 1, then the corresponding palindrome of 2k is
the one where the dummy 0 summand is deleted.)
• Palindromes of 2k + 2: No duplicates are created as distinct palindromes
of 2k lead to distinct palindromes of 2k + 2 for each instruction. Fur-
thermore, the first instruction creates palindromes with an odd number
of summands, whereas the second instruction creates palindromes with an
even number of summands. Thus, if a palindrome of 2k + 2 has an odd
number of summands, then it is created from the palindrome of 2k whose
middle summand is m2k + 2 − 2. If, on the other hand, the palindrome of
2k + 2 has an even number of summands, then it is created from the palin-
drome of 2k whose middle summand is 2 · (m2k + 2 − 1). (If m2k = 0, then
delete the dummy 0 summand.)
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• Initial conditions: This algorithm creates the one palindrome of n = 1,
namely 1, and the two palindromes of n = 2, namely 2 and 1 + 1, from the
initial condition. �

The recursive method immediately shows some of the structure within
the palindromes.

Remark 3 1. The first rule of the RPCM demonstrates that half of the
palindromes of an odd integer n have a 1 as the middle summand
(since half of the palindromes of n− 1 had a dummy zero summand).

2. The second rule of the RPCM illustrates that half of all the palin-
dromes of an even integer n have an even number of summands.

Using either the RPCM or the EPCM, we can easily determine the
total number of palindromes of n.

Theorem 4 For k ≥ 0, P2k = P2k+1 = 2k, where P0 := 1.

Proof: In the RPCM, the number of palindromes stays the same when
creating the palindromes of 2k + 1 from those of 2k, and the number of
palindromes doubles when creating the palindromes of 2k + 2. Thus,

P2k+1 = P2k and P2k = 2P2(k−1) = 22P2(k−2) = ... = 2k−1P2 = 2k

which completes the proof. �

4 The Frequency of k in Palindromes of n

The question regarding how many times the summand k appears among
all the palindromes of n is motivated by the comparable question regarding
compositions as explored in [3]. The following theorem is proved in that
paper.

Theorem 5 The number of repetitions of the integer k in all of the com-
positions of n is (n − k + 3) · 2n−k−2 for n > k and 1 for n = k.
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The following theorem states the corresponding result for palindromes.
We need to consider different cases according to whether or not n and k
have the same parity, and also according to the relative size of n and k. In
particular, we get a different pattern when n is too small to accommodate
two summands of k within a single palindrome.

Theorem 6 For n < k, Rn(k) = 0. If n and k have different parity, then

Rn(k) =
{

0 k < n < 2k
2�n/2�−k(2 + �n

2 � − k) n ≥ 2k
.

If n and k have the same parity, then

Rn(k) =




1 n = k
2(n−k)/2−1 k < n < 2k

2�n/2�−k(2 + �n
2 � − k + 2�

k+1
2 −1�) n ≥ 2k

.

Proof: Let n = 2i or n = 2i + 1, and k = 2j or 2j + 1, respectively. For
n < k, the palindrome cannot contain the summand k. If n = k, then there
is exactly one palindrome that contains the summand k, namely just k by
itself. If k < n < 2k, then the summand k can occur at most once in any
palindrome, and hence has to occur in the center. This is only possible if n
and k have the same parity (by Remark 1), which implies that Rn(k) = 0
if n and k have different parity. If they have the same parity, then the
palindromes that have the summand k in the center can be created using
the explicit method. Thus, the number of repetitions of k is given by the
number of compositions of size

(
n−k

2

)
= i− j, which gives Rn(k) = 2i−j−1.

If n ≥ 2k, then the summand k can occur in the center, or in symmet-
ric pairs at other positions within the palindrome. To count the different
cases, we will think of the palindrome as a 1 x n board as illustrated in
Figure 1.

1 2 3 4 5 6 7 . . .

. . .

n-1 n

Figure 1: Palindrome as a 1 x n board

We will count according to whether a tile of length k starts at position
s, for 1 ≤ s ≤ i − k + 1, as we will only look at the left half of the
tiling. Tilings that contain a tile of size k starting at position s can be
created by combining the tile of size k with any tiling (i.e., composition)
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of length s − 1 on the left, and a symmetric tiling (i.e., palindrome) of
length n − 2(s − 1) − 2k on the right, and then completing the remainder
of the tiling symmetrically. If n and k have the same parity, we also get
occurrences of k in the center.

We look first at the case where n and k have different parity:

Rn(k) = 2 ·
i−k+1∑

s=1

Cs−1 · Pn−2(s+k−1) = 2 ·
i−k+1∑

s=1

Cs−1 · P2(i−s−k+1)

= 2 · C0 · P2(i−k) + 2 ·
i−k+1∑

s=2

2s−2 · 2i−s−k+1

= 2 · 1 · 2i−k + 2 · 2i−k−1 · (i − k) = 2i−k(2 + i − k) (1)

which gives the formula for Rn(k) for n ≥ 2k where n and k have different
parity.

Lastly, we consider the case where n and k have the same parity and
n ≥ 2k. In this case, the number of occurrences of k is given by off-center
ones (as counted in Eq. (1)), plus those that occur in the center. The latter
is given by Ci−j = 2i−j−1 (see the case k < n < 2k). Altogether,

Rn(k) = 2i−k(2 + i − k) + 2i−j−1

=
{

2i−k(2 + i − k + 2j−1) if k = 2j
2i−k(2 + i − k + 2j) if k = 2j + 1

which proves the formula for the case n ≥ 2k where n and k have the same
parity. These two cases can be written using a single formula by noting
that �k+1

2 − 1� gives the correct powers of j − 1 and j, respectively. �

Table 1 displays the values of Rn(k) that arise from the formulas
given in Theorem 6. Examining the values in Table 1 led the authors to
observe a variety of patterns. Some of these follow from combinatorial
arguments while others just seem to be consequences of the formulas given
in Theorem 6. In Section 5 we will present those patterns that hold across
the table, and give combinatorial proofs for them. Patterns that hold only
for specific columns will be discussed in Section 6. As before, we let n = 2i
or n = 2i + 1, and k = 2j or k = 2j + 1, respectively.

5 General Patterns in the Repetitions of k in all Palin-
dromes of n

The most striking pattern in the table is the equality of certain diagonally
adjacent entries. Furthermore, diagonal sequences that start in column 1
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n\k 1 2 3 4 5 6 7 8 9 10
1 1
2 2 1
3 3 0 1
4 6 3 0 1
5 8 2 1 0 1
6 16 8 2 1 0 1
7 20 6 4 0 1 0 1
8 40 20 6 4 0 1 0 1
9 48 16 10 2 2 0 1 0 1
10 96 48 16 10 2 2 0 1 0 1
11 112 40 24 6 6 0 2 0 1 0
12 224 112 40 24 6 6 0 2 0 1
13 256 96 56 16 14 2 4 0 2 0
14 512 256 96 56 16 14 2 4 0 2
15 576 224 128 40 32 6 10 0 4 0
16 1152 576 224 128 40 32 6 10 0 4
17 1280 512 288 96 72 16 22 2 8 0
18 2560 1280 512 288 96 72 16 22 2 8
19 2816 1152 640 224 160 40 48 6 18 0
20 5632 2816 1152 640 224 160 40 48 6 18
21 6144 2560 1408 512 352 96 104 16 38 2
22 12288 6144 2560 1408 512 352 96 104 16 38

Table 1: The number of occurrences of k among all palindromes of n

for n = 2i are repeated on the diagonal that starts in row 2i + 2, with two
new entries inserted at the beginning of the lower diagonal. Note also that
the values that occur on these diagonals are comprised of the values for
even rows in column 1 (above the starting row for the diagonal), in reverse
order.

Theorem 7
a) R2i+1(2j) = R2i+2(2j + 1) for i ≥ j ≥ 1.
b) R2i(2j − 1) = R2i+3(2j), for i ≥ j ≥ 1.
c) R2i+2l(2l + 1) = R2i−2l(1) for l ≥ 1.

Proof: a) To show the first equality, note that a palindrome of an odd
integer n must have an odd middle summand; thus, no copy of 2j occurs
in the center. For i ≥ j, pairs of (2j)s can occur. For each pair of sym-
metrically located occurrences of 2j in a palindrome of 2i + 1, there is a
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corresponding palindrome of 2i + 2 which has a pair of symmetrically lo-
cated occurrences of 2j + 1 and whose middle summand is decreased by
one. Since a palindrome of an even integer n cannot have 2j + 1 as the
middle summand, the number of occurrences of 2j in the palindromes of
2i + 1 equals the number of occurrences of 2j + 1 in the palindromes of
2i + 2.

b) To show the second equality, which together with part a) leads to
the repeated diagonals, we make a similar argument. Since a palindrome
of an even integer n must have an even middle summand (possibly 0), no
copy of 2j − 1 occurs in the center. For i ≥ j, pairs of (2j − 1)s can
occur. For each pair of symmetrically located occurrences of 2j − 1 in
a palindrome of 2i, there is a corresponding palindrome of 2i + 3 which
has a pair of symmetrically located occurrences of 2j and whose middle
summand is increased by 1. Since the palindrome of 2i + 3 cannot have an
even summand in the center, there is a one-to-one correspondence between
the occurrences of the (2j − 1)s in the palindromes of 2i and the (2j)s in
the palindromes of 2i + 3.

c) Both 2i+2l and 2i−2l are even, and we are counting the number
of occurrences of 2l + 1 and 1, respectively. Neither of these can occur
in the center of the palindromes. To make the association between the
palindromes of the two sizes, we think of the palindrome as a symmetric
tiling. For a tiling of length 2i − 2l which has at least one pair of 1 x 1
tiles, replace one pair of 1 x 1 tiles with a pair of 1 x 2l tiles. This increases
the length of the tiling to 2i − 2l + 2(2l) = 2i + 2l, and each pair of 1s in
the shorter tiling has an associated pair of (2l + 1)s in the longer tiling.
Thus, the number of 1s in the palindromes of 2i − 2l equals the number of
(2l + 1)s in the palindromes of 2i + 2l. Figure 2 illustrates this process for
i = 3 and l = 1 to show that R8(3) = R4(1). There are two palindromes
of 4 that contain 1s: 1+1+1+1 and 1+2+1, and 3 palindromes of 8 that
contain 3s: 1+3+3+1, 3+1+1+3, and 3+2+3.

1 1 1 1 �� 3 1 1 3

1 1 1 1 �� 1 3 3 1

1 2 1 �� 3 2 3

Figure 2: Replacing pairs of 1s by pairs of (2l + 1)s
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Note that a palindrome of 2i−2l with j pairs of 1s will have j palindromes
of 2i + 2l associated with it. However, the correspondence of the pairs is
one-to-one. �

For diagonals that start in column 1 in a row for odd n, we only
get equality of adjacent pairs, but not a repetition of the whole diagonal
sequence.

Theorem 8 R2i+1(2j − 1) = R2i+2(2j) for i ≥ j ≥ 1.

Proof: A palindrome of an odd integer must have an odd middle sum-
mand. If this middle summand is 2j−1, increase it by 1 to get a palindrome
of 2i + 2 with middle summand 2j. For i ≥ j, we also get symmetric pairs
of (2j − 1)s. Increase each 2j − 1 by 1 to 2j, and decrease the middle
summand by 1. Thus, there is a one-to-one correspondence between the
occurrences of 2j − 1 in the palindromes of 2i + 1 and the occurrences of
2j in the palindromes of 2i + 2. �

The next pattern is a bit more complex.

Theorem 9 The sum of two adjacent entries for even n in an appropriate
set of two columns is equal to the sum of the two adjacent entries below
them:

R2i(2j) + R2i(2j + 1) = R2i+1(2j) + R2i+1(2j + 1) for i ≥ j ≥ 1.

Proof: Consider any even palindrome. Using the RPCM, the palindromes
of the next odd integer are generated by increasing the middle summand
by 1. Note, however, that in half of the palindromes of 2i this middle sum-
mand is a dummy 0 and the increase therefore does not change the number
of occurrences of any integer greater than 1; in particular the number of
occurrences of 2j and 2j + 1 remains unchanged. In the other half of the
palindromes of 2i, the middle summand is even and at least 2. Increasing
a middle summand of size 2j leads to a loss in the count of (2j)s, which is,
however, compensated for by an increase in the number of (2j + 1)s. �

Before stating patterns that are specific to particular columns of
Table 1, we will focus on the values of Rn(1) for even and odd values
of n, respectively. For k = 1, the formulas given in Theorem 6 simplify
to R2i(1) = (i + 1) · 2i−1 and R2i−1(1) = (i + 1) · 2i+1 for i ≥ 1. For
even n, the sequence of values R2i(1), given by {2, 6, 16, 40, 96, 224,
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512, 1152, 2560, 5632, 12288,....}, matches the sequence a(i) defined in
A057711 of [7] (with R2i(1) = a(i − 1)), which arises as the number of
states in a ferry problem [5]. For odd n, the sequence of values R2i−1(1),
given by {1, 3, 8, 20, 48, 112, 256, 576, 1280, 2816, 6144,...}, matches
the sequence a(i) defined in A001792 of [7] (with R2i+1(1) = a(i)). This
sequence arises in several different contexts, for example in generalizations
of the Stirling number triangles [6] and as a realization of oligomorphic
permutation groups [2].

Now imagine that we “color” all the values that belong to a known
sequence. Due to the repeated diagonals, the sequence for R2i(1) occurs
in all columns. If k is odd, the sequence occurs in the even rows, and if k
is even, it occurs in the odd rows. The first non-zero value, 2, occurs for
n = 2k +1 when k is even, and for n = 2k when k is odd. If the preceeding
zeros are included, then these values fill all the diagonals that start in an
even row in column 1, giving a checker-board coloring of the table.

We consider the remaining “uncolored” sequences in each column.
In the even rows of column 2, we get the sequence for odd rows of column
1, due to the equality of diagonally adjacent entries, thus column 2 is now
completely “colored”. Likewise, the remaining “uncolored” sequences in
adjacent odd and even columns are the same. We tested these “uncolored”
sequences, {4, 10, 24, 56, 128, 288, 640, 1408, 3072,...} (for columns 3 and
4), {6, 14, 32, 72, 160, 352, 768, 1664, 3584,...} (for columns 5 and 6), {10,
22, 48, 104, 224, 480, 1024, 2176, 4608,...} (for columns 7 and 8), {18, 38,
80, 168, 352, 736, 1536, 3200, 6656,...} (for columns 9 and 10), and {34, 70,
144, 296, 608, 1248, 2560, 5248, 10752,...} (for columns 11 and 12), both
with and without the entries for n < 2k, which are described by a different
formula than those for n ≥ 2k, against the On-Line Encyclopedia of Integer
Sequences [7]. (The sequences above list only the values for n ≥ 2k). The
fact that none of these sequences occurs makes it unlikely that sequences
for values of k ≥ 13 are in the encyclopedia; we are therefore in the process
of submitting this family of related sequences to the encyclopedia.

6 Specific Patterns in the Repetitions of k in all Palin-
dromes of n

The remaining patterns are specific to particular columns of Table 1. We
present only analytical proofs for these, rather than combinatorial ones.
The fact that the patterns hold only for specific columns seems to indicate
that no general method similar to those used in the proofs in Section 5 is
applicable. For each of the following theorems, the range indicated for i
ensures that for all values of n and k, n ≥ 2k holds.
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Theorem 10
a) R2i(1) = 2 · R2i+1(2) + 2i−1 for i ≥ 2.
b) R2i(1) = R2i+2(3) + R2i+3(3) for i ≥ 2.

Proof: Using the appropriate formula in Theorem 6, we get:

R2i(1) = 2i−1(2 + i − 1) = 2i−1(i + 1),
2 · R2i+1(2) + 2i−1 = 2 · (2i−2(2 + i − 2)) + 2i−1 = 2i−1(i + 1), and

R2i+2(3) + R2i+3(3) = 2(i+1)−3(2 + (i + 1) − 3)
+2(i+1)−3(2 + (i + 1) − 3 + 21)

= 2i−2(i + i + 2) = 2i−1(i + 1),

which completes the proof. �

Theorem 11 R2i+1(1) = R2i+4(3) + R2i+3(3) − R2i+2(3) for i ≥ 1.

Proof: From Theorem 6 we get:

R2i+1(1) = 2i−1(2 + i − 1 + 20) = 2i−1(i + 2)

and

R2i+4(3) + R2i+3(3) − R2i+2(3)
= 2(i+2)−3(2 + (i + 2) − 3) + 2(i+1)−3(2 + (i + 1) − 3 + 21)

−2(i+1)−3(2 + (i + 1) − 3)
= 2i−2 (2(i + 1) + (2 + i) − i) = 2i−2(2(i + 2) + i − i)
= 2i−1(i + 2),

which proves the statement. �

Theorem 12 R2i(2) = 2 · R2i+1(3) for i ≥ 3.

Proof: Again, we use the formula for Rn(k) given in Theorem 6.

R2i(2) = 2i−2(2 + i − 2 + 20) = 2i−2(i + 1)
= 2

[
2i−3(2 + i − 3 + 21)

]
= 2 · R2i+1(3)

which completes the proof. �

The next three theorems seem to have a similar structure, but there
is no general underlying pattern. Furthermore, these types of pattern do
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not seem to occur for larger values of k. The second pattern in Theorem 15
also differs somewhat from the ones of Theorems 13 and 14 in that the
values are expressed as a difference rather than as a sum.

Theorem 13
a) R2i+1(2) = 4 · R2i−1(3) for i ≥ 4.
b) R2i+1(2) = R2i+2(4) + R2i+3(4) for i ≥ 3.

Proof: Using Theorem 6,

R2i+1(2) = 2i−2(2 + i − 2) = 2i−2 · i,
4 · R2i−1(3) = 4

[
2(i−1)−3(2 + (i − 1) − 3 + 21)

]
= 2i−2 · i,

and

R2i+2(4) + R2i+3(4) = 2(i+1)−4(2 + (i + 1) − 4 + 21)
+2(i+1)−4(2 + (i + 1) − 4)

= 2i−3 [(i + 1) + (i − 1)] = 2i−2 · i,
which proves the desired equalities. �

Theorem 14
a) R2i(3) = 4 · R2i−2(4) for i ≥ 5.
b) R2i(3) = R2i(4) + R2i+1(4) for i ≥ 4.

Proof: The formulas for Rn(k) in Theorem 6 give

R2i(3) = 2i−3(2 + i − 3) = 2i−3(i − 1),

4 · R2i−2(4) = 4 ·
[
2(i−1)−4(2 + (i − 1) − 4 + 21)

]
= 2i−3(i − 1),

and

R2i(4) + R2i+1(4) = 2i−4(2 + i − 4 + 21) + 2i−4(2 + i − 4)
= 2i−4(i + i − 2) = 2i−3(i − 1).

This completes the proof. �

Theorem 15
a) R2i(4) = 4 · R2i−1(5) for i ≥ 6.
b) R2i(4) = R2i+3(4) − R2i+2(5) for i ≥ 4.

13



Proof: Once more we use the formula for Rn(k) given in Theorem 6.

R2i(4) = 2i−4(2 + i − 4 + 21) = 2i−4 · i
= 4 ·

[
2(i−1)−5(2 + (i − 1) − 5 + 22)

]
= 4 · R2i−1(5)

and

R2i+3(4) − R2i+2(5) = 2(i+1)−4(2 + (i + 1) − 4)
−2(i+1)−5(2 + (i + 1) − 5)

= 2i−4 [2(i − 1) − (i − 2)] = 2i−4 · i,

which completes the proof. �
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