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Abstract. For a left Noetherian ring R, the Gothendieck group G0(R) is

universal for maps which respect short exact sequences from the category of left
Noetherian R-modules to Abelian groups. There is a less well known monoid

M(R-Noeth) which has the analogous universal property with respect to maps

into commutative monoids. In this paper the relationship between these two
universal objects is studied leading to a new and more detailed description of

the former.

There is a natural decomposition G0(R) ∼= Zn × eG0(R) where n is the

number of minimal prime ideals of R and eG0(R) is a group which we show can

be embedded in M(R-Noeth), roughly speaking, as those elements which are

comparable to the image of R in M(R-Noeth). This leads to a description

of eG0(R) in terms of generators 〈A〉 for modules A of reduced rank zero and

certain relations of the form 〈U/U ′〉 = 0 where U ′ ⊂ U are isomorphic uniform

left ideals of minimal prime factor rings of R. In particular, for a domain of

Krull dimension 1, the generators of eG0(R) correspond to simple modules, and

the relations correspond to the composition series of the modules R/Rx when

x ∈ R is irreducible.

1. Introduction

Let R be a left Noetherian ring and R-Noeth the category of Noetherian left
R-modules. One of the tools used to study R-Noeth is the Grothendieck group.
This group, written G0(R), is, by definition, the Abelian group generated by the
symbols 〈A〉 for allA ∈ R-Noeth, subject to the relations 〈B〉 = 〈A〉+〈C〉 whenever
0 → A → B → C → 0 is a short exact sequence in R-Noeth. The group G0(R)
has the universal property that, if Λ is a map from R-Noeth into an Abelian group
which respects short exact sequences (4.4), then Λ factors through G0(R).

In this paper we take the view that G0(R) should be constructed in two stages:
Firstly, construct a universal monoid, denoted M(R-Noeth), for maps which re-
spect short exact sequences from R-Noeth into commutative monoids. Secondly,
construct a universal group, G(M(R-Noeth)), for monoid homomorphisms from
M(R-Noeth) into Abelian groups. From the universal properties we have imme-
diately that G0(R) ∼= G(M(R-Noeth)). We consider that M(R-Noeth) encodes
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the “extensional structure” of the category R-Noeth, which explains the title of
this paper.

By definition, G0(R) is a group, and so is cancellative, meaning that a+c = b+c
implies a = b for all elements a, b, c ∈ G0(R). One reason for studyingM(R-Noeth)
is that M(R-Noeth) has cancellation properties which are not part of its defini-
tion, and which are overlooked by enforcing cancellation by going directly to G0(R).
Specifically, it is proved in [2, 5.1] that M(R-Noeth) is strongly separative, mean-
ing that a+ a = b+ a implies a = b for all a, b ∈M(R-Noeth).

Let N be the prime radical of R, and Q the Goldie quotient ring of R/N .
Then G0(R) ∼= G0(R/N) (5.2), and, because QR/N is flat, there is a surjec-
tive group homomorphism from G0(R/N) to G0(Q). Thus we have a surjection
τ : G0(R) → G0(Q). The ring Q is semisimple so G0(Q) ∼= Zn where n is the num-
ber of isomorphism classes of simple Q modules, or equivalently, n is the number
of minimal prime ideals of R. Since G0(Q) is projective, τ splits and we get a
decomposition G0(R) ∼= Zn × G̃0(R) where G̃0(R) ∼= ker τ .

The decomposition G0(R) ∼= Zn × G̃0(R) is also reflected in the structure of
M(R-Noeth). Specifically, we show that G̃0(R) is embedded in M(R-Noeth) as
the set of elements of M(R-Noeth) which are “comparable” with r, the image of
R in M(R-Noeth): More precisely, the elements of G̃0(R) are in bijection with the
subset {≡ r} of M(R-Noeth) defined by

{≡ r} = {a ∈M(R-Noeth) | r ≤ a ≤ r},
where ≤ is the preorder on M(R-Noeth) defined by (a ≤ b ⇐⇒ ∃c such that a+
c = b). This embedding is not a monoid or group homomorphism, but if we define
the operation 2r on {≡ r} by a 2rb = c if a+b = r+c, then G̃0(R) is isomorphic to
({≡ r}, 2r). Interestingly, M(R-Noeth) contains not just G̃0(R), but also G̃0(S)
for every factor ring S of R (6.7).

This description of G̃0(R) has the consequence (6.6) that

G̃0(R) = {〈A〉 | A ∈ R-Noeth has reduced rank zero}.

This enables us to derive a set of generators and relations for G̃0(R) (7.5). For
example, in one simple case we get (7.8):

Theorem 1.1. Let R be a left Noetherian domain with Krull dimension 1, and
S a set of representatives of the isomorphism classes of simple left R-modules. Then
G̃0(R) is the Abelian group with one generator 〈S〉 for each S ∈ S, and relations
〈S1〉 + 〈S2〉 + . . . + 〈Sk〉 = 0 whenever S1, S2, . . . , Sk ∈ S are isomorphic to the
composition series factors of R/Rx with x ∈ R irreducible.

Since R is a prime ring, we have G0(R) ∼= Z× G̃0(R) in this case.

2. Commutative Monoids

All monoids in this paper will be commutative, so we will write + for the monoid
operation and 0 for the identity element of all monoids. We refer the reader to [5]
and [4] for the standard concepts of monoid theory.

We collect here some notation we will need:

Notation 2.1. Let M be a monoid and a, b ∈M .
• a ≤ b ⇐⇒ ∃ c ∈M such that a+ c = b
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• a� b ⇐⇒ a+ b ≤ b
• a ∝ b ⇐⇒ ∃ n ∈ N such that a ≤ nb
• a ≡ b ⇐⇒ a ≤ b and b ≤ a
• {≡ a} = {c ∈M | c ≡ a}

The relation ≤ is a preorder on M . For the monoid (Z+,+), the set of nonneg-
ative integers, this preorder coincides with the usual order. If M is a group, then
we have a ≤ b for all a, b ∈M . So for the monoid (Z,+), the preorder ≤ is not the
same as the usual order on the integers.

The relation � is transitive, ∝ is a preorder, and ≡ is a congruence.
A monoid M is cancellative if for all a, b, c ∈M , a+c = b+c implies a = b. As

mentioned in the introduction, the monoid M(R-Noeth), though not, in general,
cancellative, has a weak form of cancellation, called strong separativity: A monoid
M is strongly separative [1] [2, 2.3] if for all a, b ∈M , 2a = a+ b implies a = b.

We will often use strong separativity in one of the following forms.

Lemma 2.2. Let M be a strongly separative monoid, n ∈ N and a, b, c ∈M .

(1) a+ nc = b+ nc and c ∝ a =⇒ a = b
(2) a+ nc = b+ nc =⇒ a+ c = b+ c
(3) a+ nc ≤ b+ nc and c ∝ a =⇒ a ≤ b
(4) a+ nc ≤ b+ nc =⇒ a+ c ≤ b+ c

Proof. We prove first that a+ na = b+ na implies a = b. The n = 0 case is
trivial, so we will assume the claim is true for some n ∈ Z+ and consider the equation
a+(n+1)a = b+(n+1)a. Adding na to both sides we get 2a+n(2a) = (a+b)+n(2a),
so from the induction hypothesis, 2a = a + b. Since M is strongly separative this
implies a = b, completing the induction.

(1) Since c ∝ a, there is some m ∈ N and x ∈M such that c+x = ma. Then
a +mna = a + nc + nx = b + nc + nx = b +mna. By the above claim,
this implies a = b.

(2) This follows from 1 since c ∝ a+ c.
(3) Since a+nc ≤ b+nc, there is some x ∈M such that (a+x)+nc = b+nc.

We also have c ∝ a+ x, so from 1 we get a+ x = b, that is, a ≤ b.
(4) This follows from 3 since c ∝ a+ c.

�

Given an arbitrary commutative monoid M , there is an associated Abelian
group G(M), called the Grothendieck group of M , [9, 1.1.3] and a monoid
homomorphism a 7→ 〈〈a〉〉 from M to G(M) with the following universal property:
Given a monoid homomorphism λ: M → N where N is an Abelian group, there
is a unique group homomorphism λ: G(M) → N such that λ(a) = λ(〈〈a〉〉) for all
a ∈M .

Every element of G(M) can be written in the form 〈〈a〉〉−〈〈b〉〉 for some a, b ∈M .
For a, b ∈ M , we have 〈〈a〉〉 = 〈〈b〉〉 if and only if there is some c ∈ M such that
a + c = b + c. Consequently, the monoid homomorphism a 7→ 〈〈a〉〉 is injective if
and only if M is cancellative.

We write G+(M) = {〈〈a〉〉 | a ∈M} for the image of M in G(M). G+(M) is a
submonoid of G(M). An easy calculation shows that G(G+(M)) ∼= G(M), so that
G+(M) determines G(M).
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The monoid G+(M) has its own universal property: Given a monoid homomor-
phism λ: M → N where N is cancellative, there is a unique monoid homomorphism
λ: G+(M) → N such that λ(a) = λ(〈〈a〉〉) for all a ∈M .

When the monoid M is strongly separative, the map from M to G+(M) may
not be injective as it is if M were cancellative. Nonetheless this map will still be
injective on elements of M which are “big” in the sense of the following definition:
An element u of a monoid M is an order unit if a ∝ u for all a ∈M .

Combining this definition, Lemma 2.2(1) and the fact that 〈〈a〉〉 = 〈〈b〉〉 in G(M)
if and only if there is some c ∈M such that a+ c = b+ c, we get

Lemma 2.3. Let u be an order unit in a strongly separative monoid M and
a, b, c ∈M .

(1) a is an order unit ⇐⇒ u ∝ a
(2) If a is an order unit and a+ c = b+ c, then a = b.
(3) If a is an order unit and 〈〈a〉〉 = 〈〈b〉〉 then a = b.
(4) If a+ c = b+ c, then a+ u = b+ u.
(5) 〈〈a〉〉 = 〈〈b〉〉 ⇐⇒ a+ u = b+ u.

Item 5 motivates the following definition:

Definition 2.4. Let u be an element of a monoid M .
(1) Define a congruence ∼u on M by

a ∼u b ⇐⇒ u+ a = u+ b

for a, b ∈ M . We will write [a]u for the ∼u-congruence class containing
a ∈M and Hu for the quotient monoid: Hu = M/∼u.

(2) Define Gu = {[a]u ∈ Hu | a� u}. One can easily show that Gu is the set
of all units (invertible elements) of Hu and so is an Abelian group.

The following facts about Hu and Gu are easy to check:

Lemma 2.5. Let u, v be elements of a monoid M .
(1) If v ≡ u, then ∼v and ∼u coincide. In particular, Hu = Hv and Gu = Gv.
(2) The map Ω: Gu → {≡ u} defined by Ω([x]u) = u + x is a bijection (but

not a homomorphism). Define the operation 2u on {≡ u} by a 2u b =
u+x+y where a = u+x and b = u+y. Then the set {≡ u} with operation
2u is a group isomorphic to Gu, with identity u.

If M is strongly separative, we can strengthen these properties:
3. If v ∝ u ∝ v, then ∼v and ∼u coincide, Hu = Hv and Gu = Gv. In

particular, this applies if u and v are order units.
4. The operation 2u can be expressed in a simpler way: a 2u b = c where
a+ b = u+ c.

The advantage of thinking of Gu as in 2 is that the elements of the group are
elements of M , rather than congruence classes. The disadvantage is that if v ≡ u,
then Gu = Gv, and {≡ u} = {≡ v}, but the operations 2u and 2v are, in general,
different.

We now make the connection between Hu and G+(M) explicit. Using 2.3(5)
we have

Lemma 2.6. If u is an order unit in a strongly separative monoid M , then
G+(M) ∼= Hu.
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3. Prime Elements in Strongly Separative Monoids

An element p of a monoid M is prime if for all a1, a2 ∈M , p ≤ a1 +a2 implies
p ≤ a1 or p ≤ a2. Notice that any element p ≤ 0 is prime. An element p ∈ M is
proper if p 6≤ 0.

We will see in 6.2 that, for a left Noetherian ring R, the monoid M(R-Noeth)
contains a proper prime element corresponding to each prime ideal of the ring. For
our investigation of G0(R) it matters that there is a sum of such primes which is
an order unit of M(R-Noeth). In this section we discuss the monoid theoretic
consequences of this situation in a strongly separative monoid.

First we generalize the primeness property:

Lemma 3.1. Let p be a prime element in a strongly separative monoid M and
a1, a2 ∈ M , n ∈ Z+ such that np ≤ a1 + a2. Then there are n1, n2 ∈ Z+ such that
n = n1 + n2, n1p ≤ a1 and n2p ≤ a2.

Proof. The n = 0 case is trivial. The other cases we will prove by induction
on n.

Suppose that the lemma is true for some n ∈ Z+ and there are a1, a2 ∈M such
that (n + 1)p ≤ a1 + a2. Then, in particular, np ≤ a1 + a2 and by the induction
hypothesis, there are n1, n2 ∈ Z+ such that n = n1 + n2, n1p ≤ a1 and n2p ≤ a2.
Thus a1 = n1p+ b1 and a2 = n2p+ b2 for some b1, b2 ∈M . We now have

p+ np ≤ a1 + a2 = n1p+ b1 + n2p+ b2 = b1 + b2 + np.

Since M is strongly separative, we can use 2.2(3), to cancel np from this inequality
to get p ≤ b1 + b2. Because p is prime, we have either p ≤ b1 or p ≤ b2.

Without loss of generality we can assume p ≤ b1, in which case, (n1 + 1)p ≤ a1

and n2p ≤ a2 with (n1 +1)+n2 = n+1 as required. Thus we have shown that the
lemma is true for n+ 1. �

Definition 3.2. Let p be an element in a monoid M . For a ∈ M , define
Np(a) ∈ Z+ ∪ {∞} by

Np(a) = sup{n ∈ Z+ | np ≤ a}.

Among the simpler properties of Np are the following:
• Np(a) = 0 if and only if p 6≤ a.
• If a ≤ b, then Np(a) ≤ Np(b).
• If a ≡ b, then Np(a) = Np(b).
• If q ≡ p, then Np(a) = Nq(a).

We can consider Np to be a map from the monoid M to the monoid Z+ ∪{∞}
where n+∞ = ∞ for all n ∈ Z+ and ∞+∞ = ∞. When we do so, we find that
Np is a monoid homomorphism when p is a proper prime:

Theorem 3.3. If M is a strongly separative monoid and p ∈ M is a proper
prime element, then Np is a monoid homomorphism and Np(p) = 1.

Proof. We show first that Np(a1 + a2) = Np(a1) +Np(a2) for all a1, a2 ∈M .
If n1, n2 ∈ Z+ such that n1p ≤ a1 and n2p ≤ a2, then (n1 + n2)p ≤ a1 + a2,

so n1 + n2 ≤ Np(a1 + a2). Taking the supremum over all such n1 and n2 gives
Np(a1) +Np(a2) ≤ Np(a1 + a2).

To show the opposite inequality, suppose np ≤ a1 + a2 for some n ∈ Z+. Then
from 3.1, there are n1, n2 ∈ Z+ such that n = n1 + n2, n1p ≤ a1 and n2p ≤ a2.
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Since n1 ≤ Np(a1) and n2 ≤ Np(a2) we have n ≤ Np(a1) + Np(a2). Taking the
supremum over all such n we get Np(a1 + a2) ≤ Np(a1) +Np(a2).

Since p is proper, we also have Np(0) = 0, and so Np is a monoid homomor-
phism.

Finally we check that Np(p) = 1. The inequality p ≤ p implies Np(p) ≥ 1. But
if Np(p) > 1, then we would have 2p ≤ p. We could then cancel p using 2.2(3) to
get p ≤ 0, contrary to the hypothesis. �

In the remainder of this section we will investigate the structure of a monoid
M which contains prime elements {p1, p2, . . . , pn} such that u = p1 + p2 + . . .+ pn

is an order unit.
If we had pi ≤ pj for some i 6= j, then it is easy to confirm that we could

remove pi from the above sum and still have an order unit. Thus, without loss of
generality, we will assume that the set {p1, p2, . . . , pn} is incomparable, meaning
that pi ≤ pj implies i = j for i, j ∈ {1, 2, . . . , n}.

We will further specialize to the case when M is not a group, meaning that M
contains proper elements. In this situation, the set {p1, p2, . . . , pn} must contain
at least one proper prime and then incomparability ensures that all the remaining
primes are also proper.

Now suppose that M is strongly separative. We will write Ni rather than
Npi

for the homomorphism corresponding to the prime element pi. Since the set
{p1, p2, . . . , pn} is incomparable, we have

Ni(pj) =

{
1 if i = j

0 if i 6= j

for all i, j ∈ {1, 2, . . . , n}. Also Ni(u) = 1 for i ∈ {1, 2, . . . , n}.
For any a ∈ M we have a ∝ u and so there is m ∈ N such that a ≤ mu.

Applying the homomorphism Ni we get Ni(a) ≤ Ni(mu) = m. We have shown
therefore that Ni(a) is finite for i ∈ {1, 2, . . . , n}.

It is convenient to combine the maps N1, N2, . . . , Nn into a single homomor-
phism ~N : M → (Z+)n by defining

~N(a) = (N1(a), N2(a), . . . , Nn(a))

for a ∈ M . Clearly ~N(u) = (1, 1, . . . , 1) and ~N(pi) = ei for i = 1, 2, . . . , n where
e1, e2, . . . , en are the standard basis vectors for Zn.

We also define

ā = N1(a)p1 +N2(a)p2 + . . .+Nn(a)pn,

for any a ∈M . One readily checks that the map a 7→ ā is a monoid homomorphism
such that ¯̄a = ā. Note also that ū = u.

Theorem 3.4. Let M be a strongly separative monoid which contains an incom-
parable set {p1, p2, . . . , pn} of proper prime elements such that u = p1 +p2 + . . .+pn

is an order unit. Let a, b ∈M .
(1) a = ā+ x for some x� u

(2) ~N(a) = (0, 0, . . . , 0) ⇐⇒ a� u ⇐⇒ [a]u ∈ Gu

(3) ~N(a) ≥ (1, 1, . . . , 1) ⇐⇒ a ≥ u ⇐⇒ a is an order unit
(4) If a is an order unit, then ( ~N(a) = ~N(b) ⇐⇒ a ≡ b)
(5) G+(M) ∼= Hu

∼= (Z+)n ×Gu
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(6) G(M) ∼= Zn ×Gu

Proof.

(1) We show first that ā ≤ a.
By the definition of N1 we have N1(a)p1 ≤ a, so there is some a1 ∈M

such that N1(a)p1 + a1 = a. Applying the homomorphism N2 to this
equation gives N2(a1) = N2(a). Thus there is some a2 ∈ M such that
a1 = N2(a)p2 + a2, that is, N1(a)p1 +N2(a)p2 + a2 = a. Repeating this
process in the obvious way gives the inequality ā ≤ a.

Write a = ā + x for some x ∈ M . Since a ∝ u, there are b ∈ M and
m ∈ N such that a + b = mu. We have ā + b̄ = mū = mu, and from the
previous paragraph, b̄ ≤ b. Thus

mu+ x = ā+ b̄+ x ≤ a+ b = mu.

Using 2.2(4), we can cancel (m−1)u from this inequality to get u+x ≤ u,
that is x� u.

(2) If ~N(a) = (0, 0, . . . , 0), then ā = 0 and, by 1, a = x for some x� u.
Conversely, a� u means a+u ≤ u. Applying the homomorphism ~N ,

we get ~N(a) + ~N(u) ≤ ~N(u). Since ~N(u) = (1, 1, 1, . . . , 1), this implies
~N(a) = (0, 0, . . . , 0).

The remaining claim is direct from the definition of Gu.
(3) If ~N(a) ≥ (1, 1, . . . , 1), then, with 1, we have a ≥ ā ≥ u. If a ≥ u,

then it is trivial that a is an order unit. Finally, if a is an order unit,
then for some k ∈ N, we have u ≤ ka. Applying the homomorphism ~N

we get (1, 1, . . . , 1) = ~N(u) ≤ k ~N(a). This can only be true if ~N(a) ≥
(1, 1, . . . , 1).

(4) If ~N(a) = ~N(b), then ā = b̄, and also, from 3, b is an order unit. From 1,
we have a = ā+ x for some x� u. Since a is an order unit, the proof of
3 shows that u ≤ ā, and hence x� ā. Thus a = ā+ x ≤ ā = b̄ ≤ b, that
is a ≤ b. Similarly, b ≤ a.

The converse is easy.
(5) We define a map ψ: Hu → (Z+)n × Gu as follows: For a ∈ M we have

from 1, that a = ā+x for some x� u. Thus [x]u ∈ Gu and we can define
ψ([a]u) = ( ~N(a), [x]u). Using 2.3(4), it is easy to confirm that this map is
well defined.

Define σ: (Z+)n×Gu → Hu by σ(n1, n2, . . . , nn, [x]u) = [n1p1+n2p2+
. . . + nnpn + x]u. It is easy to check that σ is a monoid homomorphism
and that σ and ψ are inverse maps. Thus ψ is a monoid isomorphism and
Hu

∼= Z+ ×Gu. From 2.6 we also have Hu
∼= G+(M).

(6) G(M) ∼= G(G+(M)) ∼= G((Z+)n ×Gu) ∼= Zn ×Gu.

�

Notice that, from 2.5(3), parts 5 and 6 of this theorem remain true if u is
replaced by any other order unit of M .

Finally, we note that the map ~N : M → (Z+)n has its own universal property
with respect to certain types of cancellative monoids.
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Corollary 3.5. Let M be as in the theorem, and N a cancellative monoid such
that a ≡ b implies a = b for all a, b ∈ N . If Λ: M → N is a monoid homomorphism,
then Λ factors uniquely through the map ~N : M → (Z+)n.

Proof. Using the universal property of G+(M) ∼= Hu
∼= (Z+)n × Gu, there

is a unique induced monoid homomorphism λ: (Z+)n × Gu → N such that for all
a ∈ M , Λ(a) = λ( ~N(a), [x]u) where a = ā + x. Since Gu is a group we have
( ~N(a), [x]u) ≡ ( ~N(a), [0]u) in (Z+)n × Gu, and so λ( ~N(a), [x]u) ≡ λ( ~N(a), [0]u)
in N . By hypothesis, this implies λ( ~N(a), [x]u) = λ( ~N(a), [0]u), that is, Λ(a) =
λ( ~N(a), [0]u) for all a ∈M . If λ′: (Z+)n → N is the restriction of λ to (Z+)n, then
we have Λ(a) = λ′( ~N(a)) for all a ∈M . �

Examples of monoids N which satisfy the hypothesis of this corollary are (Z+)k

and (R+)k for k ∈ N, where R+ is the set of nonnegative real numbers with addition
as its operation.

4. Extension Properties of Module Categories

Throughout this section, R is an arbitrary ring and R-Noeth the category of
left Noetherian R-modules. In this section we define the monoid M(R-Noeth)
and discuss its basic properties. Not appearing here is any discussion of strong
separativity. For a proof that M(R-Noeth) is strongly separative see [2, 5.1].

As suggested in the introduction, M(R-Noeth) could be defined via its univer-
sal property with respect to maps on R-Noeth which respect short exact sequences.
We will instead construct M(R-Noeth) in terms of certain equivalence classes of
modules. The universal property then appears as 4.5.

We begin by defining some concepts which will be useful for manipulating
submodule series of modules.

Definition 4.1. A partition of A ∈ R-Noeth is a finite indexed set of mod-
ules A = (Ai)i∈I such that there is a submodules series 0 = A′0 ≤ A′1 ≤ · · · ≤ A′n =
A and a bijection σ: I → {1, 2, .., n} with Ai

∼= A′σ(i)/A
′
σ(i)−1 for all i ∈ I. Two

partitions A = (Ai)i∈I and B = (Bj)j∈J are isomorphic if there is a bijection
σ: I → J such that Ai

∼= Bσ(i) for all i ∈ I.
A partition B = (Bj)j∈J is a refinement of partition A = (Ai)i∈I if J can be

written as the disjoint union of subsets (Ji)i∈I such that for all i ∈ I, (Bj)j∈Ji is a
partition of Ai. Note that if A is a partition of A ∈ R-Noeth, then any refinement
of A is also a partition of A.

If A and B are partitions then we write A ∪ B for the disjoint union of the
modules in each partition indexed by the disjoint union of the corresponding index
sets.

One would like to define a partition of a module A to be the set of isomor-
phism classes of the factors in some submodule series of A. Unfortunately, the
same isomorphism class may appear more than once, and we want to record the
multiplicity of such isomorphism classes. By making partitions indexed sets, and
defining isomorphism for partitions as above we allow multiple copies of a module
to appear in the partition.

If 0 → A → B → C → 0 is a short exact sequence in R-Noeth, then B has
the partition (A,C). Further, if A is partition of A and C is a partition of C, then
A ∪ C is a partition of B.
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The Schreier Refinement Theorem [3, 3.10], when rephrased in terms of parti-
tions, says that any two partitions of a module have isomorphic refinements. This
property is exactly what is needed to show that the claims built into the following
definition are true. For the details, see [2, Section 3].

Definition 4.2. Let A,B ∈ R-Noeth. We write A ∼ B whenever A and B
have isomorphic partitions. We will write [A] for the ∼-equivalence class containing
A ∈ R-Noeth. Note that the zero module by itself is a ∼-equivalence class, that
is, [0] = {0}.

We write M(R-Noeth) for R-Noeth/∼, the class of ∼-equivalence classes of
R-Noeth, and define the operation + on M(R-Noeth) by [A] + [B] = [A⊕B] for
all A,B ∈ R-Noeth. (M(R-Noeth),+) is a commutative monoid with identity
0 = [0] = {0} which is also the only nonproper element of M(R-Noeth).

Though the operation + is defined in terms of ⊕, it is its relationship to short
exact sequences that is crucial: If 0 → A → B → C → 0 is an exact sequence in
R-Noeth, then B and A ⊕ C both have the partition (A,C), so B ∼ A ⊕ C and
[B] = [A ⊕ C] = [A] + [C]. A simple induction shows that if A = (Ai)i∈I is a
partition of A, then [A] =

∑
i∈I [Ai].

Notice that if A,B ∈ R-Noeth with A isomorphic to a submodule, factor
module or subfactor of B, then [A] ≤ [B] in M(R-Noeth). To obtain a more
precise understanding of the preorder ≤ as it applies to M(R-Noeth), we use the
fact that if A and B have isomorphic partitions, then any refinement of the partition
of B induces an isomorphic refinement of the partition of A and vice versa.

Lemma 4.3. Let A,B,A1, A2, B1, B2 ∈ R-Noeth.
(1) [A1] + [A2] = [B1] + [B2] in M(R-Noeth) if and only if there are isomor-

phic refinements of the partitions (A1, A2) and (B1, B2).
(2) [A] ≤ [B1] + [B2] if and only if there is a partition A = (Ai)i∈I of A, a

refinement B = (B′
j)j∈J of (B1, B2), and an injective map σ: I → J such

that Ai
∼= B′

σ(i) for all i ∈ I.
(3) [A] ≤ [B] if and only if there are partitions A = (Ai)i∈I and B = (Bj)j∈J

for A and B and an injective map σ: I → J such that Ai
∼= Bσ(i) for all

i ∈ I.

Proof.

(1) If [A1] + [A2] = [B1] + [B2], then A1 ⊕ A2 ∼ B1 ⊕ B2, and A1 ⊕ A2

and B1 ⊕ B2 have isomorphic partitions. Using the Schreier Refinement
Theorem, we can find a refinement of the given partition of A1⊕A2 which
is also a refinement of (A1, A2). This new partition of A1⊕A2 induces an
isomorphic refinement of the given partition of B1⊕B2. We can then find
a further refinement of the new partition of B1 ⊕B2 that is a refinement
of (B1, B2). This partition of (B1, B2) induces an isomorphic refinement
of A1 ⊕ A2. The resulting partitions are then isomorphic refinements of
the partitions (A1, A2) and (B1, B2).

The converse is trivial.
(2) Since [A] ≤ [B1]+[B2], there is some X ∈ R-Noeth such that [A]+[X] =

[B1] + [B2]. The claim then follows from 1.
(3) Put B1 = B and B2 = 0 in 2.

�



10 GARY BROOKFIELD

Now we consider the universal property of M(R-Noeth):

Definition 4.4. Let N be a monoid. Then a function Λ: R-Noeth → N is
said to respect short exact sequences in R-Noeth if Λ(0) = 0 and Λ(B) =
Λ(A)+Λ(C) whenever 0 → A→ B → C → 0 is a short exact sequence in R-Noeth.

The key property of such maps is that if A = (Ai)i∈I is a partition of A ∈
R-Noeth, then Λ(A) =

∑
i∈I Λ(Ai). Hence if modules A and B have isomorphic

partitions, then Λ(A) = Λ(B).

Theorem 4.5. Let N be a monoid and Λ: R-Noeth → N , a function which
respects short exact sequences. Then Λ factors uniquely through M(R-Noeth).
Specifically, there exists a unique monoid homomorphism, λ: M(R-Noeth) → N
such that the following diagram commutes:

R-Noeth
[ ] //

Λ
''PPPPPPPPPPPPPP M(R-Noeth)

λ

��
N

Proof. Define the map λ: M(R-Noeth) → Λ(R-Noeth) by λ([A]) = Λ(A)
for all A ∈ R-Noeth. This is well defined because if [A] = [B], then A and B
have isomorphic partitions and so Λ(A) = Λ(B). For any [A], [B] ∈ M , we have
λ([A] + [B]) = λ([A ⊕ B]) = Λ(A ⊕ B) = Λ(A) + Λ(B) = λ([A]) + λ([B]). Also,
λ([0]) = Λ(0) = 0. So λ is a monoid homomorphism. �

Next we consider the relationship between the monoids M(R-Noeth) and
M(R/I-Noeth) when I is a two sided ideal in R.

There is a well known functor F : R/I-Noeth → R-Noeth that takes a module
R/IA ∈ R/I-Noeth and maps it to F (A) = RA which has the same elements and
addition as A, but with module multiplication defined by ra = (r+I)a for r ∈ R and
a ∈ A. A module A ∈ R-Noeth is in F (R/I-Noeth) if and only if it is annihilated
by I. In particular, if A is in F (R/I-Noeth), then so are any submodules, factor
modules, subfactor modules, and the modules in any partition of A.

The functor F is exact, so the map R/I-Noeth F→ R-Noeth
[ ]→M(R-Noeth)

respects short exact sequences, and there is an induced monoid homomorphism
γ: M(R/I-Noeth) →M(R-Noeth) which takes [R/IA] in M(R/I-Noeth) to [RA]
in M(R-Noeth).

Theorem 4.6. Let I be a two sided ideal in a ring R.
(1) M(R/I-Noeth) embeds in M(R-Noeth) via the monoid homomorphism

γ defined above.
(2) If [B] ≤ [A] ∈ γ(R/I-Noeth), then [B] ∈ γ(R/I-Noeth).
(3) If, in addition, Ik = 0 for some k ∈ N, then γ is surjective. In particular,

M(R/I-Noeth) ∼= M(R-Noeth). If Λ is a map on R/I-Noeth which
respects short exact sequences, then Λ extends to a unique such map on
R-Noeth given by the formula

Λ(A) =
k−1∑
j=0

Λ(IjA/Ij+1A)

for all A ∈ R-Noeth.
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Proof.

(1) Suppose we have A,B ∈ R/I-Noeth such that γ([A]) = γ([B]), that
is, [RA] = [RB]. Then RA = F (A) and RB = F (B) have isomorphic
R-module partitions. From the above discussion these partitions serve
also as isomorphic R/I-module partitions, that is, [R/IA] = [R/IB] in
M(R/I-Noeth). Thus the map γ is injective andM(R/I-Noeth) embeds
in M(R-Noeth).

(2) From 4.3(3) and the fact that all modules in any partition of a module A
in F (R/I-Noeth) are also in F (R/I-Noeth).

(3) Any module RA ∈ R-Noeth has the partition (A/IA, IA/I2A, . . . , Ik−1A).
Each module in this partition is in F (R/I-Noeth) and so

[A] = [A/IA] + [IA/I2A] + [I2A/I3A] + . . .+ [Ik−1A]

is in γ(M(R/I-Noeth)). Consequently [A] ∈ γ(M(R/I-Noeth)), and we
have shown that γ is surjective.

The remaining claims are immediate.
�

In view of this theorem we make the following convention:

Notation 4.7. If I is a two sided ideal in a ring R, then we will consider
M(R/I-Noeth) to be a submonoid of M(R-Noeth). In particular, when I is
nilpotent, we have M(R/I-Noeth) = M(R-Noeth) and G(M(R/I-Noeth)) =
G(M(R-Noeth)).

Note that from 4.6(2), if b ≤ a ∈ M(R/I-Noeth), then b ∈ M(R/I-Noeth).
This is a property not shared by all monoid embeddings. Consider, for example,
the submonoid {0, 2, 4, 6, 8, . . .} of Z+.

At least one part of the monoid M(R-Noeth) can be described explicitly,
namely, the image of the finite length modules in M(R-Noeth). Let R-Len be the
category of all finite length modules over the ring R and M(R-Len), the image of
R-Len in M(R-Noeth).

Let S be a simple left R-module. Using 4.3(2), we see that [S] is a prime
element of M(R-Noeth) (and of M(R-Len)). We will write NS rather than N[S]

for the monoid homomorphism provided by 3.3. If A ∈ R-Len, then NS([A]) is the
number of times the isomorphism class of S occurs in a composition series for A.

Let S be a set of representatives of the isomorphism classes of the simple R-
modules. Using the monoid homomorphisms NS for S ∈ S, it is easy to see that
for any A ∈ R-Len,

[A] =
∑
S∈S

NS([A])[S].

The sum makes sense since NS([A]) will be finite for all S ∈ S and zero for all but a
finite number of S ∈ S. Further, such expressions are unique. If we write (Z+)(S) for
the free monoid generated by the elements of S, and construct the homomorphism
ν: [A] 7→ (NS([A]))S∈S ∈ (Z+)(S), then we have the following:

Theorem 4.8. Let R be a ring and S a set of representatives of the isomorphism
classes of simple R-modules. Then M(R-Len) is isomorphic to (Z+)(S) via the
homomorphism ν.
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5. G0(R) and the Reduced Rank Function

As already described in the introduction, given a left Noetherian ring R, the
Grothendieck group G0(R), is defined to be the Abelian group generated by
the symbols 〈A〉 for all A ∈ R-Noeth, subject to the relations 〈B〉 = 〈A〉 + 〈C〉
whenever 0 → A→ B → C → 0 is a short exact sequence in R-Noeth. This group
has the universal property that, if Λ is a map from R-Noeth into an Abelian group
which respects short exact sequences, then Λ factors through G0(R). Every element
of G0(R) can be written as 〈A〉 − 〈B〉 for some A,B ∈ R-Noeth. We define also
G+

0 (R) = {〈A〉 | A ∈ R-Noeth}. For the basic properties of G0(R) and G+
0 (R) see

[8].
The universal properties of M(R-Noeth), G0(R) and G(M(R-Noeth)) im-

ply that G(M(R-Noeth)) and G0(R) are isomorphic via the map 〈〈[A]〉〉 7→ 〈A〉
for A ∈ R-Noeth. This same map restricts to a monoid isomorphism between
G+(M(R-Noeth)) and G+

0 (R). Accordingly, we make the following convention:

Notation 5.1. If R is a left Noetherian ring, then we will identify G0(R) and
G(M(R-Noeth)) retaining the notation used for G0(R). Similarly, we identify
G+

0 (R) and G+(M(R-Noeth)).

The reduced rank function ρ: R-Noeth → Z+ is a well known map which
respects short exact sequences in R-Noeth. See [3, Ch. 10] or [10, 3.4.5] for its
definition and properties. In this section we will redefine the reduced rank and
related functions in a fashion motivated by our monoid theoretic approach.

We note first that the largest nilpotent two sided ideal of R is the prime radical.
Hence we have the following corollary of 4.6 (using the conventions of 4.7 and 5.1):

Corollary 5.2. Let R be a left Noetherian ring with prime radical N . Then
M(R/N -Noeth) = M(R-Noeth), and G0(R/N) = G0(R).

Further, any map on R-Noeth which respects short exact sequences is an
extension of a map defined on R/N -Noeth. Since R/N is a semiprime ring, we
have reduced our task to defining reduced rank for semiprime rings.

Suppose then that R is a semiprime, left Noetherian ring with Goldie quo-
tient ring Q. As a right R-module, Q is flat, so, using the universal property of
M(R-Noeth), one easily shows that there is an induced monoid homomorphism
σ: M(R-Noeth) →M(Q-Noeth) such that σ([A]) = [Q⊗

R
A] for all A ∈ R-Noeth.

The ring Q is semisimple, so Q-Len = Q-Noeth, and 4.8 provides a descrip-
tion of M(Q-Noeth). In this particular case, there are only a finite number of
isomorphism classes of simple Q-modules. Explicitly, let P1, P2, . . . , Pn be the min-
imal prime ideals of R, and, for i = 1, 2, . . . , n, let Qi be the Goldie quotient
ring of R/Pi with Si a simple Qi-module. Then Q ∼= Q1 × Q2 × . . . × Qn and
S = {S1, S2, . . . , Sn} is a set of representatives of all the isomorphism classes of
simple Q-modules. By 4.8, M(Q-Noeth) is isomorphic to the monoid (Z+)n via
the map ~N : M(Q-Noeth) → (Z+)n given by

~N([A]) = (NS1([A]), NS1([A]), . . . , NSn
([A]))

= (len(Q1 ⊗
Q
A), len(Q2 ⊗

Q
A), . . . , len(Qn ⊗

Q
A))
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for A ∈ Q-Noeth. The homomorphism ~N is the same one discussed in 3.4 since
{[S1], [S2], . . . , [Sn]} is an incomparable set of prime elements of M(Q-Noeth) such
that [S1] + [S2] + . . .+ [Sn] is an order unit.

Let λ: (Z+)n → Z+ be the monoid homomorphism given by λ(k1, k2, . . . , kn) =
k1 + k2 + . . . + kn. One recognizes immediately that the map from Q-Noeth
via M(Q-Noeth) and (Z+)n to Z+ takes a module A ∈ Q-Len and gives its
composition series length len(A).

Summarizing this discussion in a commutative diagram we have

R-Noeth
[ ] //

Q⊗
R

��

ρ

��

~ρ

��

M(R-Noeth)

σ

��
Q-Noeth

[ ] //

len

77M(Q-Noeth)
~N // (Z+)n λ // Z+

The maps ρ: R-Noeth → Z+ and ~ρ: R-Noeth → (Z+)n are defined by this
diagram. Explicitly, we have ρ(A) = len(Q⊗

R
A) and

~ρ(A) = (len(Q1 ⊗
R
A), len(Q2 ⊗

R
A), . . . , len(Qn ⊗

R
A))

for A ∈ R-Noeth. We will write ρi for the ith component of the map ~ρ.
Using 4.6(3) we can now extend the definitions of ρ and ~ρ to arbitrary left

Noetherian rings: Let R be a left Noetherian ring with prime radical N such that
Nk = 0. The ring R/N is semiprime, so we have maps ρ: R/N -Noeth → Z+ and
~ρ: R/N -Noeth → (Z+)n which respect short exact sequences. These maps extend
uniquely to R-Noeth by the formulas

ρ(A) =
k−1∑
j=0

len(Q ⊗
R/N

(N jA/N j+1A))

and

ρi(A) =
k−1∑
j=0

len(Qi ⊗
R/N

(N jA/N j+1A))

for A ∈ R-Noeth, and i = 1, 2, . . . , n. Here Q is the Goldie quotient ring of R/N .
The minimal prime ideals of R correspond to the minimal prime ideals of R/N . In
particular, we still have Q ∼= Q1 ×Q2 × . . .×Qn, where Qi is the Goldie quotient
ring of the ring R/Pi and P1, P2, . . . , Pn are the minimal prime ideals of R.

From the first equation, one recognizes that ρ is the reduced rank function
as defined in the standard texts ([3, Ch. 10], [10, 3.4.5]). The maps ρi for i =
1, 2, . . . , n, are called atomic rank functions by Krause [6].

We can now describe the relationship between the reduced rank function and
the Grothendieck groups G0(R) and G0(Q). Notice first that since M(Q-Noeth) ∼=
(Z+)n, we have G0(Q) ∼= G((Z+)n) ∼= Zn. Using this fact together with the
identification M(R-Noeth) = M(R/N -Noeth) we can construct the following
commutative diagram:
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R-Noeth //

〈 〉 ''OOOOOOOOOOOO

~ρ

))
M(R-Noeth) //

〈〈 〉〉
��

M(Q-Noeth) //

〈〈 〉〉
��

(Z+)n

��
G0(R) τ // G0(Q)

∼= // Zn

The homomorphism τ is defined using the universal property of G0(R). Ex-
plicitly

τ(〈A〉) =
k−1∑
j=0

〈Q ⊗
R/N

(N jA/N j+1A)〉

for all A ∈ R-Noeth. In the introduction we pointed out that since G0(Q) ∼= Zn

is projective, the homomorphism τ splits so that G0(R) ∼= Zn × G̃0(R) where
G̃0(R) = ker τ . By diagram chasing one can easily show that for A,B ∈ R-Noeth,
〈A〉 − 〈B〉 is in G̃0(R) if and only if ~ρ(A) = ~ρ(B).

In particular, if ρ(A) = 0, then ~ρ(A) = 0 and 〈A〉 ∈ G̃0(R). It is one of the
main results of this paper (6.6) that every element of G̃0(R) has this form.

6. Prime Elements and Order Units in M(R-Noeth)

To apply the monoid theory of Section 3 to M(R-Noeth) we need to identify a
set of prime elements {p1, p2, . . . , pn} ofM(R-Noeth) such that u = p1+p2+. . .+pn

is an order unit.
We have already seen that [S] is a prime element of M(R-Noeth) whenever

S ∈ R-Noeth is a simple module. Unless the ring is Artinian, prime elements of
this type will not be “large” enough. Instead, the prime elements we seek are the
images of uniform submodules of R/P where P is a prime ideal of R. Following
4.7, we consider M(R/P -Noeth) to be contained in M(R-Noeth).

First we note a simple fact about [R]:

Lemma 6.1. For any left Noetherian ring R, the element [R] is an order unit
of M(R-Noeth). An element [U ] ∈ M(R-Noeth) is an order unit if and only if
[R] ∝ [U ].

Proof. For any A ∈ R-Noeth there is an epimorphism σ: Rm → A for some
m ∈ N, and so [A] ≤ m[R], that is, [A] ∝ [R].

The second claim follows from the transitivity of ∝. �

Lemma 6.2. Let P be a prime ideal in a left Noetherian ring R, U a uniform
left submodule of R/P , and A,A1, A2 ∈ R-Noeth.

(1) [U ] ≤ [A1] + [A2] ⇐⇒ A1 or A2 has a subfactor isomorphic to U .
(2) [U ] ≤ [A] ⇐⇒ A has a subfactor isomorphic to U .
(3) [U ] is a prime element of M(R-Noeth).
(4) [U ] is an order unit of M(R/P -Noeth).

Proof.
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(1) If [U ] ≤ [A1] + [A2], then, from 4.3(2), U has a partition U = (Ui)i ∈ I
such that for each i ∈ I, Ui is isomorphic to either a subfactor of A1

or a subfactor of A2. Thus, without loss of generality, we can suppose
that A1 has a subfactor isomorphic to a nonzero submodule, V say, of
U . Nonzero submodules of uniform modules are again uniform, so by [7,
3.3.3], V contains a submodule isomorphic to U . Hence A1 has a subfactor
isomorphic to U .

The converse is trivial.
(2) Set A1 = A and A2 = 0 in 1.
(3) If [U ] ≤ [A1] + [A2], then, from 1, U is isomorphic to a subfactor of A1 or

A2. Hence [U ] ≤ [A1] or [U ] ≤ [A2].
(4) From [3, 6.25], R/P is isomorphic to a submodule of Um where m is

the uniform dimension of R/P . Thus [R/P ] ∝ [U ]. Since U is an R/P -
module, the claim follows from 6.1 as applied to the ring R/P .

�

In the next lemma we use the general fact that if A ∈ R-Noeth is isomorphic
to a submodule, factor module or subfactor of B ∈ R-Noeth, then the annihilator
of B is contained in the annihilator of A.

Lemma 6.3. Let P1 and P2 be prime ideals in a left Noetherian ring R, and
U1, U2 uniform left submodules of R/P1, R/P2 respectively. Then

[U1] ≤ [U2] ⇐⇒ P1 ⊇ P2.

Proof. If [U1] ≤ [U2], then from 6.2(2), U2 has a subfactor isomorphic to U1.
Hence P2 = annU2 ⊆ annU1 = P1.

Conversely, if P1 ⊇ P2, then, using the fact that R/P1 is a factor of R/P2 and
6.2(4), we get [U1] ≤ [R/P1] ≤ [R/P2] ∝ [U2]. Thus [U1] ∝ [U2]. Since [U1] is
prime, this implies [U1] ≤ [U2]. �

Throughout the remainder of this section P1, P2, . . . , Pn will be the minimal
prime ideals of a left Noetherian ring R. Using 4.7, we will consider the monoids
M(R/Pi-Noeth) for i ∈ {1, 2, . . . , n} to be contained inM(R-Noeth). For each i ∈
{1, 2, . . . , n}, let Ui be a uniform submodule of R/Pi, and pi = [Ui] ∈M(R-Noeth).

Theorem 6.4. Let R be a left Noetherian ring, and, for i ∈ {1, 2, . . . , n}, let
Pi, Ui, pi be as above. Then {p1, p2, . . . , pn} is an incomparable set of proper prime
elements such that u = p1 + p2 + . . .+ pn is an order unit in M(R-Noeth).

Proof. From 6.2(3) and 6.3, {p1, p2, . . . , pn} is an incomparable set of prime
elements of M(R-Noeth), and since these primes are nonzero, they are proper.

It remains then only to prove that u is an order unit in M(R-Noeth).
From [3, 2.4] there is a finite product of the minimal prime ideals P1, P2, . . . , Pn

(repetitions allowed) which equals zero. Let P ′
k . . . P

′
2P

′
1 = 0 with P ′

1, P
′
2, . . . , P

′
k ∈

{P1, P2, . . . , Pn} be such a product.
Given A ∈ R-Noeth, we have the submodule series A ≥ P ′

1A ≥ P ′
2P

′
1A ≥ . . . ≥

0. The ith factor in the series is in R/P ′
i -Noeth and so the corresponding term in

the expression

[A] = [A/P ′
1A] + [P ′

1A/P
′
2P

′
1A] + . . .+ [P ′

k−1 . . . P
′
2P

′
1A]

is in M(R/P ′
i -Noeth). Thus [A] ∈ M(R/P1-Noeth) + M(R/P2-Noeth) + . . . +

M(R/Pn-Noeth).
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We have shown then that

M(R-Noeth) = M(R/P1-Noeth) +M(R/P2-Noeth) + . . .+M(R/Pn-Noeth).

Since by 6.2(4), pi = [Ui] is an order unit of M(R/Pi-Noeth) for i = 1, 2, . . . , n, it
follows easily that u = p1 + p2 + . . .+ pn is an order unit of M(R-Noeth). �

Since M(R-Noeth) is strongly separative [2, 5.1], we can apply the monoid
structure theory in Section 3. In particular there is a monoid homomorphism
~N : M(R-Noeth) → (Z+)n defined with respect to the primes {p1, p2, . . . , pn}. We
make the connection between this monoid theoretic rank function and the reduced
rank function ~ρ:

Theorem 6.5. Let R be a left Noetherian ring, and ~N : M(R-Noeth) → (Z+)n

be as described above. Then ~N([A]) = ~ρ(A) for all A ∈ R-Noeth.

Proof. The map ~ρ: R-Noeth → (Z+)n respects short exact sequences, so
using the universal property of M(R-Noeth) and then 3.5, there is a unique
monoid homomorphism µ: (Z+)n → (Z+)n such that ~ρ(A) = µ( ~N([A])) for all
A ∈ R-Noeth.

To prove that µ is the identity function, it suffices to show that µ(ei) = ei

for the standard basis vectors e1, e2, . . . , en of (Z+)n. For i = 1, 2, . . . , n we have
~N(pi) = ~N([Ui]) = ei, and it is easy to confirm that ~ρ(Ui) = ei [6, 2.3], and so
µ(ei) = ei as required. �

Theorem 6.6. Let R be a left Noetherian ring, P1, P2, . . . , Pn the minimal
prime ideals of R. For i = 1, 2, . . . , n let Ui be a uniform submodule of R/Pi and
pi = [Ui]. Let u = p1 + p2 + . . .+ pn. Let A,B ∈ R-Noeth.

(1) ρ(A) = 0 ⇐⇒ ~ρ(A) = 0 ⇐⇒ [A] � u ⇐⇒ [[A]]u ∈ Gu

(2) ~ρ(A) ≥ (1, 1, . . . , 1) ⇐⇒ [A] is an order unit
(3) If [A] is an order unit, then (~ρ(A) = ~ρ(A) ⇐⇒ [A] ≡ [B])
(4) G+

0 (R) ∼= Hu
∼= (Z+)n ×Gu

(5) G0(R) ∼= Zn ×Gu

(6) Gu
∼= G̃0(R) = {〈A〉 | A ∈ R-Noeth and ρ(A) = 0}

Proof. Items 1-5 are directly from 3.4 and 6.5.
Since we now have G0(R) ∼= Zn×Gu and G0(R) ∼= Zn×G̃0(R), it is no surprise

that Gu
∼= G̃0(R). Confirming this takes a little effort:

Tracing through the maps implicit in 3.4, and using 6.5, one finds that the
isomorphismG+

0 (R) ∼= (Z+)n×Gu is given by the map 〈A〉 7→ (~ρ(A), [x]u) where x ∈
M(R-Noeth) is determined by the equation [A] = [A]+x. Hence the isomorphism
G0(R) ∼= Zn ×Gu is given by the map 〈A〉 − 〈B〉 7→ (~ρ(A) − ~ρ(B), [x]u − [y]u) for
suitable x, y ∈M(R-Noeth). Since 〈A〉− 〈B〉 ∈ G̃0(R) if and only if ~ρ(A) = ~ρ(B),
it is easy to see that under this isomorphism, G̃0(R) maps onto 0×Gu ⊆ Zn×Gu.
Therefore Gu and G̃0(R) are isomorphic via the map [[A]]u 7→ 〈A〉 for all [[A]]u ∈
Gu. From 1 we see that every element of G̃0(R) is then of the form 〈A〉 for some
A ∈ R-Noeth such that ρ(A) = 0. �

Using 2.5(3) one easily confirms that all the claims of this theorem remain
true if u is replaced by any other order unit of M(R-Noeth). For example, as
described in the introduction, we have G+

0 (R) ∼= (Z+)n × Gr, G0(R) ∼= Zn × Gr

and G̃0(R) ∼= Gr where r = [R].
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Perhaps the most interesting consequence of the theorem is that G̃0(R) is em-
bedded in M(R-Noeth): From 2.5(2) we have that G̃0(R) is in bijection with the
set {≡ u}, or more generally with the set {≡ v} for any order unit v. Moreover,
by 4.6, for any two sided ideal I, M(R/I-Noeth) embeds in M(R-Noeth). Since
[R/I] is an order unit of M(R/I-Noeth) we get the following corollary.

Corollary 6.7. Let I be a two sided ideal in a left Noetherian ring R and
uI = [R/I] ∈ M(R-Noeth). Then G̃0(R/I) is isomorphic to the set {≡ uI} with
operation 2I defined by a 2I b = c where a+ b = uI + c for a, b, c ∈ {≡ uI}.

This corollary follows directly from 2.5, but requires some attention to the
question of whether {≡ uI} as a subset of M(R/I-Noeth) is the same as {≡ uI}
as a subset of M(R-Noeth). That no ambiguity arises follows from the comment
following 4.7.

Finally in this section we record a universal property for the reduced rank
function.

Corollary 6.8. Let N be a cancellative monoid such that a ≡ b implies a = b
for all a, b ∈ N , and Λ: R-Noeth → N , a map which respects short exact sequences
in R-Noeth. Then Λ factors uniquely through the map ~ρ: R-Noeth → (Z+)n.

Proof. From 4.5, 3.5 and 6.5. �

This corollary can be phrased as follows: If Λ: R-Noeth → N is a map as
above, then Λ(A) = k1ρ1(A)+k2ρ2(A)+ . . .+knρn(A) for all A ∈ R-Noeth where
ki = Λ(Ui) for i = 1, 2, . . . , n. Krause [6] proved the special case of this corollary
when N = Z+.

7. Generators and Relations for G̃0(R)

Combining the results of the previous sections, we are now able to prove the
main theorem of the paper which provides generators and relations for G̃0 of any
left Noetherian ring.

As in the previous section, P1, P2, . . . , Pn are the minimal prime ideals of a
left Noetherian ring R. For each i ∈ {1, 2, . . . , n}, Ui is a uniform submodule of
R/Pi, and pi = [Ui] ∈ M(R-Noeth). We also set u = p1 + p2 + . . . + pn =
[U1⊕U2⊕ . . .⊕Un], and remind the reader that, from 6.6(6), the group Gu, defined
in 2.4, and G̃0(R) are isomorphic.

We define R-Tor = {A ∈ R-Noeth | ρ(A) = 0}. When R is semiprime left
Noetherian, the modules in R-Tor are exactly the R-torsion modules ([3, 10.5]). If
R is not semiprime, then it is not clear how to define torsion modules, so, for the pur-
poses of this paper, we are free to consider that any module with reduced rank zero
is torsion. We also define M(R-Tor) to be the image of R-Tor in M(R-Noeth).

From 6.6(1) we have that for all A ∈ R-Noeth,

A ∈ R-Tor ⇐⇒ ρ(A) = 0 ⇐⇒ [A] � u ⇐⇒ [[A]]u ∈ Gu.

Thus the map M(R-Tor) → Gu taking [A] to [[A]]u is surjective, and Gu is
M(R-Tor) modulo the congruence ∼u. Our goal is to provide a module theo-
retic description of this congruence and hence of Gu and G̃0(R) — at least in
circumstances where M(R-Tor) is understood.

The key to this description is the following simple observation: For some i ∈
{1, 2, . . . , n}, let U ′

i be a submodule of Ui such that U ′
i
∼= Ui. Since ρ(Ui) = ρ(U ′

i),
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we have ρ(Ui/U
′
i) = 0, that is, Ui/U

′
i ∈ R-Tor. Further, [Ui] = [U ′

i ] + [Ui/U
′
i ] =

[Ui] + [Ui/U
′
i ], and since [Ui] ≤ u, this implies that u = u + [Ui/U

′
i ]. In Gu, this

means that [[Ui/U
′
i ]]u = [0]u = 0. Thus for each submodule U ′

i ≤ Ui such that
U ′

i
∼= Ui, Ui/U

′
i is a torsion module which becomes trivial in Gu. This suggests the

following definition:

Definition 7.1. Let ≈ be the congruence on M(R-Tor) which is generated by

[Ui/U
′
i ] ≈ 0

whenever i ∈ {1, 2, . . . , n} and U ′
i ≤ Ui is such that U ′

i
∼= Ui. We write G≈ =

M(R-Tor)/≈ for the quotient monoid, and 〈a〉≈ = 〈[A]〉≈ for the image of a =
[A] ∈M(R-Tor) in G≈.

Our goal is to show that for A,B ∈ R-Tor, [A] ≈ [B] if and only if [A] ∼u [B],
and hence that G≈ = Gu.

We have chosen the generators of the congruence ≈ so that [A] ≈ [B] implies
[A] ∼u [B]. To prove the opposite implication we will need to construct a map
∆: R-Noeth → G≈ which respects short exact sequences. We define this map first
on certain partitions of modules:

Definition 7.2. Let A ∈ R-Noeth. A tu-partition (tu=torsion-uniform) of
A is a partition A = (Aj)j∈J of A such that for each j ∈ J either Aj ∈ R-Tor or
Aj = Ui for some i ∈ {1, 2, . . . , n}.

For a tu-partition A = (Aj)j∈J we define ∆(A) ∈ G≈ by

∆(A) =
∑

Aj∈R-Tor

〈[Aj ]〉≈.

Of course, if A is a torsion module, then any partition A of A is a tu-partition
and ∆(A) = 〈[A]〉≈. In particular, ∆(A) is the same for all tu-partitions of A. This
property we want to extend to the case that A is not torsion.

Lemma 7.3. Let A ∈ R-Noeth.
(1) A has a tu-partition.
(2) Any partition of A has a refinement which is a tu-partition.
(3) If U is a tu-partition of Ui for some i ∈ {1, 2, . . . , n}, then ∆(U) = 0.
(4) If A and A′ are tu-partitions of A with A′ a refinement of A, then ∆(A′) =

∆(A).
(5) If A and A′ are tu-partitions of A, then ∆(A′) = ∆(A).

Proof.

(1) An induction on the reduced rank of A. . .
If ρ(A) = 0, then A ∈ R-Tor and we are done.
Suppose the claim is true for modules of reduced rank m ∈ Z+ or

less, and ρ(A) = m + 1. That ρ(A) > 0 means that ρi(A) > 0 for some
i ∈ {1, 2, . . . , n} and hence [Ui] ≤ [A]. By 6.2(2), A has submodules
A′ < A′′ such that A′′/A′ ∼= Ui. Since ρ(Ui) = 1, we have ρ(A/A′′) ≤ m
and ρ(A′) ≤ m. Hence A/A′′ and A′ have tu-partitions A′ and A′′. Then
A′ ∪ A′′ ∪ {Ui} is a tu-partition of A.

(2) Immediate from 1, since any module in the partition of A has a tu-
partition.
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(3) Since the modules in U are isomorphic to the factors of a submodule series
in Ui, exactly one of these modules is isomorphic to a submodule U ′

i of Ui,
and all others must be torsion modules. Thus, without loss of generality,
we can assume that U = (U ′

i , A1, A2, . . . , Ak) where A1, A2, . . . , Ak are
torsion modules. Notice also that [Ui/U

′
i ] = [A1] + [A2] + . . . + [Ak] and

~ρ(U ′
i) = ~ρ(Ui).
Since U ′

i is not torsion, it must be isomorphic to one of U1, U2, . . . , Un.
The equation ~ρ(U ′

i) = ~ρ(Ui) shows that we must have U ′
i
∼= Ui.

Putting everything together we get

∆(U) = 〈[A1]〉≈ + 〈[A2]〉≈ + . . .+ 〈[Ak]〉≈
= 〈([A1] + [A2] + . . .+ [Ak])〉≈
= 〈[Ui/U

′
i ]〉≈ = 0.

(4) This follows from 3, since A′ is a union of tu-partitions of Ui for various
indexes, and tu-partitions of torsion modules.

(5) Since A and A′ are partitions of A, they have a common refinement A′′.
By 2, we can assume A′′ is a tu-partition. Then by 4, ∆(A) = ∆(A′′) =
∆(A′).

�

Using items 1 and 5 of this lemma we can now define the map ∆: R-Noeth →
G≈.

Definition 7.4. For A ∈ R-Noeth, define ∆(A) = ∆(A) where A is any
tu-partition of A.

It is simple to confirm that ∆: R-Noeth → G≈ respects short exact sequences:
If 0 → A → B → C → 0 is an exact sequence in R-Noeth, then the union of
tu-partitions for A and C is a tu-partition of B, and so ∆(B) = ∆(A) + ∆(C).
Consequently there is an induced monoid homomorphism δ: M(R-Noeth) → G≈
such that δ([A]) = ∆(A) for all A ∈ R-Noeth.

Reviewing the situation for some special cases we have δ([A]) = ∆(A) = 〈[A]〉≈
for any A ∈ R-Tor, δ(pi) = ∆(Ui) = 0 for i = 1, 2, . . . , n, and δ(u) = δ(p1 + p2 +
. . .+ pn) = 0.

The monoid homomorphism δ: M(R-Noeth) → G≈ is used in an essential way
to show that G≈ = Gu, and hence prove the main theorem of this paper that
G̃0(R) ∼= G≈:

Theorem 7.5. Let R be a left Noetherian ring, P1, P2, . . . , Pn the minimal
prime ideals of R. For i = 1, 2, . . . , n let Ui be a uniform submodule of R/Pi. Then
G̃0(R) is isomorphic to the monoid M(R-Tor) modulo the congruence ≈ generated
by the relations

[Ui/U
′
i ] ≈ 0

whenever i ∈ {1, 2, . . . , n} with U ′
i ≤ Ui is such that U ′

i
∼= Ui.

Proof. We first show that G≈ is a group. Since G≈ is a monoid, it suffices to
show that every element of G≈ has an inverse.

Let 〈[A]〉≈ ∈ G≈ for some A ∈ R-Tor. Then [A] � u so there is some B ∈
R-Noeth such that [A] + [B] = u. Applying the homomorphism δ we get δ([A]) +
δ([B]) = δ(u), or 〈[A]〉≈ + ∆(B) = 0. Thus 〈[A]〉≈ has an inverse in G≈.
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We have already noted that [A] ≈ [B] implies [A] ∼u [B] for all A,B ∈ R-Tor.
To show the converse, we use the universal property of G+

0 (R) and the fact that,
by 6.6(4), G+

0 (R) is isomorphic to Hu.
Since G≈ is cancellative, the monoid homomorphism δ: M(R-Noeth) → G≈

induces a monoid homomorphism δ′: Hu → G≈ such that δ′([[A]]u) = δ([A]) =
∆(A) for all A ∈ R-Noeth.

If A,B ∈ R-Tor such that [A] ∼u [B], then [[A]]u = [[B]]u in Hu and so

〈[A]〉≈ = ∆(A) = δ′([[A]]u) = δ′([[B]]u) = ∆(B) = 〈[B]〉≈,
that is, [A] ≈ [B].

We have now shown that if A,B ∈ R-Tor, then [A] ≈ [B] if and only if
[A] ∼u [B], and hence that G≈ = Gu. That G̃0(R) ∼= G≈ follows from 6.6(6). �

For the remainder of this section we consider the case of prime rings with Krull
dimension 1. In this case, 0 is the unique minimal prime ideal and we need only
one uniform ideal U ≤ R in the theorem. Since, in addition, the ring has Krull
dimension 1, a module A is in R-Tor if and only if A has finite length ([3, 13.7]),
that is, we have R-Tor = R-Len. From 4.8, R-Tor is the free monoid generated
by the elements {[S] | S ∈ S} where S is a set of representatives of the isomorphism
classes of simple R-modules.

Another simplification is that ≈ is generated by the relations [U/U ′] ≈ 0 where
U ′ is a maximal (proper) image of U in itself. To show this, suppose we have some
U ′ ≤ U such that U ′ ∼= U . If U ′ is not a maximal image of U in itself, there
is some U1 < U such that U ′ ≤ U1 and U1 is a maximal image of U in U . If
U ′ is not a maximal image of U in U1, we repeat to produce a descending chain
U = U0 > U1 > U2 > . . . > U ′.

The quotient module U/U ′ has finite length, so this chain must be finite with
Uk = U ′ for some k ∈ N. The relation [U/U ′] ≈ 0 is then generated as a congruence
by the relations [Ui/Ui+1] ≈ 0 for i = 0, 1, 2, . . . , k − 1. Since each of the factors in
the submodule series is isomorphic to U modulo a maximal proper image of U in
U , each of these generating relations are of the claimed form.

Therefore we have

Corollary 7.6. Let R be a left Noetherian prime ring with Krull dimension 1,
U ≤ R a uniform left ideal, and S a set of representatives of the isomorphism classes
of simple left R-modules. Then G̃0(R) is isomorphic to the monoid generated by the
symbols {[S] | S ∈ S}, modulo the congruence generated by [S1]+ [S2]+ . . .+[Sk] ≈
0 whenever (S1, S2, . . . , Sk) is a list of the composition factors of U/U ′ with U ′

maximal among (proper) submodules of U which are isomorphic to U .

For those who prefer a group theoretic version of this theorem, some diagram
chasing shows

Corollary 7.7. Let R be a left Noetherian prime ring with Krull dimension 1,
U ≤ R a uniform left ideal, and S a set of representatives of the isomorphism classes
of simple left R-modules. Then G̃0(R) is isomorphic to the Abelian group with one
generator [S] for each S ∈ S, and relations [S1] + [S2] + . . . + [Sk] = 0 whenever
(S1, S2, . . . , Sk) is a list of the composition factors of U/U ′ with U ′ maximal among
(proper) submodules of U which are isomorphic to U .

If R is a left Noetherian domain, then we get further simplifications: Firstly,
R is itself uniform; secondly, an ideal of R is isomorphic to R if and only if it is
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principal; finally, a proper principal ideal Rx is maximal among proper principal
ideals if and only if x is irreducible, meaning that x is not a unit, and for a, b ∈ R,
x = ab implies a is a unit or b is a unit.

Corollary 7.8. Let R be a left Noetherian domain with Krull dimension 1,
and S a set of representatives of the isomorphism classes of simple left R-modules.
Then G̃0(R) is isomorphic to the Abelian group with one generator [S] for each
S ∈ S, and relations [S1] + [S2] + . . .+ [Sk] = 0 whenever (S1, S2, . . . , Sk) is a list
of the composition factors of R/Rx with x ∈ R irreducible.

Theorem 1.1 from the introduction is this corollary rewritten with the notation
used for G0(R).

Since R is prime, in any of the circumstances of the last three corollaries we
have G0(R) ∼= Z× G̃0(R).
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