Analyzing ELLIE - the Story of a Combinatorial Game

S. Heubach ${ }^{1} \quad$ P. Chinn ${ }^{2} \quad$ M. Dufour ${ }^{3} \quad$ G. E. Stevens ${ }^{4}$
${ }^{1}$ Dept. of Mathematics, California State Univ. Los Angeles
${ }^{2}$ Dept. of Mathematics, Humboldt State University
${ }^{3}$ Dept. of Mathematics, Université du Quebeq à Montréal
${ }^{4}$ Dept. of Mathematics, Hartwick College

May 13, 2009
Math Colloquium, San Jose State University

Overview

Beginnings

The Naive Approach

Tools from Combinatorial Game Theory
 The Basics
 The Grundy Function

Analysis of Ellie

Equivalent Game
Grundy Function for Ellie
Octal Games

The Future

Overview

Beginnings

The Naive Approach

Tools from Combinatorial Game Theory
 The Basics
 The Grundy Function

Analysis of Ellie

Equivalent Game
Grundy Function for Ellie
Octal Games
The Future

Overview

Beginnings

The Naive Approach
Tools from Combinatorial Game Theory
The Basics
The Grundy Function
Analysis of Ellie
Equivalent Game
Grundy Function for Ellie
Octal Games
The Future

Overview

Beginnings

The Naive Approach
Tools from Combinatorial Game Theory
The Basics
The Grundy Function
Analysis of Ellie
Equivalent Game
Grundy Function for Ellie
Octal Games
The Future

Overview

Beginnings
The Naive Approach
Tools from Combinatorial Game Theory
The Basics
The Grundy Function
Analysis of Ellie
Equivalent Game
Grundy Function for Ellie
Octal Games
The Future

How ELLIE was conceived

- P. Chinn, R. Grimaldi, and S. Heubach, Tiling with Ls and Squares, Journal of Integer Sequences, Vol 10 (2007)
- Phyllis and Silvia talk to Gary - the idea of a game is born
- Matthieu joins in and brings background in combinatorial games

How ELLIE was conceived

- P. Chinn, R. Grimaldi, and S. Heubach, Tiling with Ls and Squares, Journal of Integer Sequences, Vol 10 (2007)
- Phyllis and Silvia talk to Gary - the idea of a game is born
- Matthieu joins in and brings background in combinatorial games

How ELLIE was conceived

- P. Chinn, R. Grimaldi, and S. Heubach, Tiling with Ls and Squares, Journal of Integer Sequences, Vol 10 (2007)
- Phyllis and Silvia talk to Gary - the idea of a game is born
- Matthieu joins in and brings background in combinatorial games

Description of ELLIE

ELLIE is played on a rectangular board of size m-by- n. Two players alternately place L-shaped tiles of area 3. Last player to move wins (normal play).

Questions:

- For which values of m and n is there a winning strategy for Player I?
- What is the winning strategy?

Combinatorial Games

Definition

An impartial combinatorial game has the following properties:

- no randomness (dice, spinners) is involved, that is, each player has complete information about the game and the potential moves
- each player has the same moves available at each point in the game (as opposed to chess, where there are white and black pieces).

Working out small examples

Example (The 2×2 board)

First player obviously wins, since only one L can be placed. In each case, the second player only finds one square left, which does not allow for placement of an L.

Working out small examples

Example (The 2×3 board)

First player's move is orange, second player's move is green.

> Note that for this board, the outcome (winning or losing) for the first player depends on that player's move. If s/he is smart, s/he makes the first or fourth move. This means that Player I has a winning strategy.

Working out small examples

Example (The 2×3 board)

First player's move is orange, second player's move is green.

Note that for this board, the outcome (winning or losing) for the first player depends on that player's move. If s/he is smart, s/he makes the first or fourth move. This means that Player I has a winning strategy.

Game trees

Definition

A position (or game) in Ellie refers to any of the possible boards that arise in the course of playing the game. A position that arises from a move in the current position or game is called an option of the game. The directed graph which has the positions as the nodes and an arrow between a game and its options is called the game tree.

Options that are symmetric are usually not listed in the game tree.

Game tree for 2×3 board

Impartial Games

Definition

A position is a \mathcal{P} position for the player about to make a move if the \mathcal{P} revious player can force a win (that is, the player about to make a move is in a losing position). The position is a \mathcal{N} position if the \mathcal{N} ext player (the player about to make a move) can force a win.

For impartial games, there are only two outcome classes for any position, namely winning position (\mathcal{N} position) or losing position (\mathcal{P} position). There are no ties.

Recursive labeling

To find out whether Player I has a winning strategy, we label the nodes of the game tree recursively as follows:

- Leafs of the game tree are always losing (\mathcal{P}) positions.

Next we select any position (node) whose options (offsprings) are all labeled. There are two cases:

- The position has at least one option that is a losing (\mathcal{P}) position
- All options of the position are winning (\mathcal{N}) positions

The label of the empty board then tells whether Player I (\mathcal{N}) or Player II (\mathcal{P}) has a winning strategy.

Recursive labeling

To find out whether Player I has a winning strategy, we label the nodes of the game tree recursively as follows:

- Leafs of the game tree are always losing (\mathcal{P}) positions.

Next we select any position (node) whose options (offsprings) are all labeled. There are two cases:

- The position has at least one option that is a losing (\mathcal{P}) position
- All options of the position are winning (\mathcal{N}) positions

The label of the empty board then tells whether Player I (\mathcal{N}) or Player II (\mathcal{P}) has a winning strategy.

Recursive labeling

To find out whether Player I has a winning strategy, we label the nodes of the game tree recursively as follows:

- Leafs of the game tree are always losing (\mathcal{P}) positions.

Next we select any position (node) whose options (offsprings) are all labeled. There are two cases:

- The position has at least one option that is a losing (\mathcal{P}) position
- All options of the position are winning (\mathcal{N}) positions

The label of the empty board then tells whether Player I (\mathcal{N}) or Player II (\mathcal{P}) has a winning strategy.

Recursive labeling

To find out whether Player I has a winning strategy, we label the nodes of the game tree recursively as follows:

- Leafs of the game tree are always losing (\mathcal{P}) positions.

Next we select any position (node) whose options (offsprings) are all labeled. There are two cases:

- The position has at least one option that is a losing (\mathcal{P}) position
- All options of the position are winning (\mathcal{N}) positions

The label of the empty board then tells whether Player I (\mathcal{N}) or Player II (\mathcal{P}) has a winning strategy.

Recursive labeling

To find out whether Player I has a winning strategy, we label the nodes of the game tree recursively as follows:

- Leafs of the game tree are always losing (\mathcal{P}) positions.

Next we select any position (node) whose options (offsprings) are all labeled. There are two cases:

- The position has at least one option that is a losing (\mathcal{P}) position \Rightarrow winning position and should be labeled \mathcal{N}
- All options of the position are winning (\mathcal{N}) positions

The label of the empty board then tells whether Player I (\mathcal{N}) or Player II (\mathcal{P}) has a winning strategy.

Recursive labeling

To find out whether Player I has a winning strategy, we label the nodes of the game tree recursively as follows:

- Leafs of the game tree are always losing (\mathcal{P}) positions.

Next we select any position (node) whose options (offsprings) are all labeled. There are two cases:

- The position has at least one option that is a $\operatorname{losing}(\mathcal{P})$ position \Rightarrow winning position and should be labeled \mathcal{N}
- All options of the position are winning (\mathcal{N}) positions \Rightarrow losing position and should be labeled \mathcal{P}
The label of the empty board then tells whether Player I (\mathcal{N}) or Player II (\mathcal{P}) has a winning strategy.

Recursive labeling

To find out whether Player I has a winning strategy, we label the nodes of the game tree recursively as follows:

- Leafs of the game tree are always losing (\mathcal{P}) positions.

Next we select any position (node) whose options (offsprings) are all labeled. There are two cases:

- The position has at least one option that is a $\operatorname{losing}(\mathcal{P})$ position \Rightarrow winning position and should be labeled \mathcal{N}
- All options of the position are winning (\mathcal{N}) positions \Rightarrow losing position and should be labeled \mathcal{P}
The label of the empty board then tells whether Player I (\mathcal{N}) or Player II (\mathcal{P}) has a winning strategy.

Labeling the game tree for 2×3 board

Labeling the game tree for 2×3 board

Labeling the game tree for 2×3 board

Labeling the game tree for 2×3 board

Sums of Games

Definition

If a move splits a game (board) into two smaller sub-boards such that the next player can play in only one of the two sub-boards, then the original game is called the sum of the two smaller games.

Example

The Grundy Function

Theorem

The Grundy-value $\mathcal{G}(G)$ of a game G is a measure of the distance to a losing position. If $\mathcal{G}(G)=n$, then for $k \leq n$ there is a sequence of moves that will lead to a losing position in k steps. In particular, G is in the class \mathcal{P} if and only if $\mathcal{G}(G)=0$.

So how do we compute the Grundy function???

The Grundy Function

Theorem

The Grundy-value $\mathcal{G}(G)$ of a game G is a measure of the distance to a losing position. If $\mathcal{G}(G)=n$, then for $k \leq n$ there is a sequence of moves that will lead to a losing position in k steps. In particular, G is in the class \mathcal{P} if and only if $\mathcal{G}(G)=0$.

So how do we compute the Grundy function???

Digital Sum and Mex

Definition

The digital sum $a \oplus b \oplus \cdots \oplus k$ of of integers a, b, \ldots, k is obtained by translating the values into their binary representation and then adding them without carry-over.

Note that $a \oplus a=0$.

Definition

The minimum excluded value or mex of a set of non-negative integers is the least non-negative integer which does not occur in the set. It is denoted by mex $\{a, b, c, \ldots, k\}$.

Digital Sum and Mex

Example

The digital sum $12 \oplus 13 \oplus 7$ equals 6 :

12	1	1	0	0
13	1	1	0	1
7		1	1	1
	0	1	1	0

Digital Sum and Mex

Example

The digital sum $12 \oplus 13 \oplus 7$ equals 6 :

12	1	1	0	0
13	1	1	0	1
7		1	1	1
	0	1	1	0

Example

$$
\begin{aligned}
& \operatorname{mex}\{1,4,5,7\}=0 \\
& \operatorname{mex}\{0,1,2,6\}=3
\end{aligned}
$$

Digital Sum and Mex

Example

The digital sum $12 \oplus 13 \oplus 7$ equals 6 :

12	1	1	0	0
13	1	1	0	1
7		1	1	1
	0	1	1	0

Example

$$
\begin{aligned}
\operatorname{mex}\{1,4,5,7\} & =0 \\
\operatorname{mex}\{0,1,2,6\} & =3
\end{aligned}
$$

Digital Sum and Mex

Example

The digital sum $12 \oplus 13 \oplus 7$ equals 6 :

12	1	1	0	0
13	1	1	0	1
7		1	1	1
	0	1	1	0

Example

$$
\begin{aligned}
& \operatorname{mex}\{1,4,5,7\}=0 \\
& \operatorname{mex}\{0,1,2,6\}=3
\end{aligned}
$$

Computation of the Grundy Function

Theorem

For any impartial games G, H, and J,

- $\mathcal{G}(G)=\operatorname{mex}\{\mathcal{G}(\mathrm{H}) \mid \mathrm{H}$ is an option of $G\}$.
- $G=H+J$ if and only if $\mathcal{G}(G)=\mathcal{G}(H) \oplus \mathcal{G}(J)$.

What does this all mean?

- For any given game tree we can recursively label the positions with their Grundy value, then read off the value for the starting board.
- This procedure is scalable if we can find a general rule explaining how a game breaks into smaller games so we can have a computer compute the Grundy function.
- We do not get the winning strategy (unless we look at the trace of the Grundy values), but we can answer the question about existence of a winning strategy.

What does this all mean?

- For any given game tree we can recursively label the positions with their Grundy value, then read off the value for the starting board.
- This procedure is scalable if we can find a general rule explaining how a game breaks into smaller games so we can have a computer compute the Grundy function.
- We do not get the winning strategy (unless we look at the trace of the Grundy values), but we can answer the question about existence of a winning strategy.

What does this all mean?

- For any given game tree we can recursively label the positions with their Grundy value, then read off the value for the starting board.
- This procedure is scalable if we can find a general rule explaining how a game breaks into smaller games so we can have a computer compute the Grundy function.
- We do not get the winning strategy (unless we look at the trace of the Grundy values), but we can answer the question about existence of a winning strategy.

Ellie equivalent

॥

$2 \times n$ board for Ellie $\Longleftrightarrow 1 \times(2 n)$ board with 1×3 tile Only the number of squares matters, not the geometry!

Ellie equivalent

Ellie equivalent

Recursion for Grundy function

- Play at square i splits $1 \times n$ board into two boards of lengths $i-1$ and $n-i-2$

- G_{n} denotes play on a $1 \times n$ board; $G(n, i)$ denotes the game that results from placing 1×3 tile at square i
- $\mathcal{G}\left(G_{0}\right)=\mathcal{G}\left(G_{1}\right)=\mathcal{G}\left(G_{2}\right)=0$
- $\mathcal{G}\left(G_{n}\right)=\operatorname{mex}\left\{\mathcal{G}(G(n, i)) \left\lvert\, 1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor\right.\right\}$

$$
=\operatorname{mex}\left\{\mathcal{G}\left(G_{i-1}\right) \oplus \mathcal{G}\left(G_{n-i-2}\right) \left\lvert\, 1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor\right.\right\}
$$

Values for Grundy function

Let's compute the first 10 or so values of the Grundy function

- $\mathcal{G}\left(G_{0}\right)=\mathcal{G}\left(G_{1}\right)=\mathcal{G}\left(G_{2}\right)=0$
- $\mathcal{G}\left(G_{n}\right)=\operatorname{mex}\left\{\mathcal{G}\left(G_{i-1}\right) \oplus \mathcal{G}\left(G_{n-i-2}\right) \left\lvert\, 1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor\right.\right\}$
- $\mathcal{G}\left(G_{3}\right)=\operatorname{mex}\left\{\mathcal{G}\left(G_{0}\right) \oplus \mathcal{G}\left(G_{0}\right)\right\}=\operatorname{mex}\{0\}=1$
$\triangleright \mathcal{G}\left(G_{4}\right)=\operatorname{mex}\left\{\mathcal{G}\left(G_{0}\right) \oplus \mathcal{G}\left(G_{1}\right), \mathcal{G}\left(G_{1}\right) \oplus \mathcal{G}\left(G_{0}\right)\right\}=\operatorname{mex}\{0\}=1$

n	0	1	2	3	4	5	6	7	8	9	10
$\mathcal{G}\left(G_{n}\right)$	0	0	0	1	1	1	2	2		3	3

Values for Grundy function

Let's compute the first 10 or so values of the Grundy function

- $\mathcal{G}\left(G_{0}\right)=\mathcal{G}\left(G_{1}\right)=\mathcal{G}\left(G_{2}\right)=0$
- $\mathcal{G}\left(G_{n}\right)=\operatorname{mex}\left\{\mathcal{G}\left(G_{i-1}\right) \oplus \mathcal{G}\left(G_{n-i-2}\right) \left\lvert\, 1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor\right.\right\}$
- $\mathcal{G}\left(G_{3}\right)=\operatorname{mex}\left\{\mathcal{G}\left(G_{0}\right) \oplus \mathcal{G}\left(G_{0}\right)\right\}=\operatorname{mex}\{0\}=1$

n	0	1	2	3	4	5	6	7	8	9	10
$\mathcal{G}\left(G_{n}\right)$	0	0	0	1	1	1	2	2		3	3

Values for Grundy function

Let's compute the first 10 or so values of the Grundy function

- $\mathcal{G}\left(G_{0}\right)=\mathcal{G}\left(G_{1}\right)=\mathcal{G}\left(G_{2}\right)=0$
- $\mathcal{G}\left(G_{n}\right)=\operatorname{mex}\left\{\mathcal{G}\left(G_{i-1}\right) \oplus \mathcal{G}\left(G_{n-i-2}\right) \left\lvert\, 1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor\right.\right\}$
- $\mathcal{G}\left(G_{3}\right)=\operatorname{mex}\left\{\mathcal{G}\left(G_{0}\right) \oplus \mathcal{G}\left(G_{0}\right)\right\}=\operatorname{mex}\{0\}=1$
- $\mathcal{G}\left(G_{4}\right)=\operatorname{mex}\left\{\mathcal{G}\left(G_{0}\right) \oplus \mathcal{G}\left(G_{1}\right), \mathcal{G}\left(G_{1}\right) \oplus \mathcal{G}\left(G_{0}\right)\right\}=\operatorname{mex}\{0\}=1$

n	0	1	2	3	4	5	6	7	8	9	10
$\mathcal{G}\left(G_{n}\right)$	0	0	0	1	1	1	2	2		3	3

Values for Grundy function

Let's compute the first 10 or so values of the Grundy function

- $\mathcal{G}\left(G_{0}\right)=\mathcal{G}\left(G_{1}\right)=\mathcal{G}\left(G_{2}\right)=0$
- $\mathcal{G}\left(G_{n}\right)=\operatorname{mex}\left\{\mathcal{G}\left(G_{i-1}\right) \oplus \mathcal{G}\left(G_{n-i-2}\right) \left\lvert\, 1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor\right.\right\}$
- $\mathcal{G}\left(G_{3}\right)=\operatorname{mex}\left\{\mathcal{G}\left(G_{0}\right) \oplus \mathcal{G}\left(G_{0}\right)\right\}=\operatorname{mex}\{0\}=1$
- $\mathcal{G}\left(G_{4}\right)=\operatorname{mex}\left\{\mathcal{G}\left(G_{0}\right) \oplus \mathcal{G}\left(G_{1}\right), \mathcal{G}\left(G_{1}\right) \oplus \mathcal{G}\left(G_{0}\right)\right\}=\operatorname{mex}\{0\}=1$

n	0	1	2	3	4	5	6	7	8	9	10
$\mathcal{G}\left(G_{n}\right)$	0	0	0	1	1	1	2	2		3	3

Values for Grundy function

Let's compute the first 10 or so values of the Grundy function

- $\mathcal{G}\left(G_{0}\right)=\mathcal{G}\left(G_{1}\right)=\mathcal{G}\left(G_{2}\right)=0$
- $\mathcal{G}\left(G_{n}\right)=\operatorname{mex}\left\{\mathcal{G}\left(G_{i-1}\right) \oplus \mathcal{G}\left(G_{n-i-2}\right) \left\lvert\, 1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor\right.\right\}$
- $\mathcal{G}\left(G_{3}\right)=\operatorname{mex}\left\{\mathcal{G}\left(G_{0}\right) \oplus \mathcal{G}\left(G_{0}\right)\right\}=\operatorname{mex}\{0\}=1$
- $\mathcal{G}\left(G_{4}\right)=\operatorname{mex}\left\{\mathcal{G}\left(G_{0}\right) \oplus \mathcal{G}\left(G_{1}\right), \mathcal{G}\left(G_{1}\right) \oplus \mathcal{G}\left(G_{0}\right)\right\}=\operatorname{mex}\{0\}=1$

n	0	1	2	3	4	5	6	7	8	9	10
$\mathcal{G}\left(G_{n}\right)$	0	0	0	1	1	1	2	2		3	3

Values for Grundy function

Let's compute the first 10 or so values of the Grundy function

- $\mathcal{G}\left(G_{0}\right)=\mathcal{G}\left(G_{1}\right)=\mathcal{G}\left(G_{2}\right)=0$
- $\mathcal{G}\left(G_{n}\right)=\operatorname{mex}\left\{\mathcal{G}\left(G_{i-1}\right) \oplus \mathcal{G}\left(G_{n-i-2}\right) \left\lvert\, 1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor\right.\right\}$
- $\mathcal{G}\left(G_{3}\right)=\operatorname{mex}\left\{\mathcal{G}\left(G_{0}\right) \oplus \mathcal{G}\left(G_{0}\right)\right\}=\operatorname{mex}\{0\}=1$
- $\mathcal{G}\left(G_{4}\right)=\operatorname{mex}\left\{\mathcal{G}\left(G_{0}\right) \oplus \mathcal{G}\left(G_{1}\right), \mathcal{G}\left(G_{1}\right) \oplus \mathcal{G}\left(G_{0}\right)\right\}=\operatorname{mex}\{0\}=1$

n	0	1	2	3	4	5	6	7	8	9	10
$\mathcal{G}\left(G_{n}\right)$	0	0	0	1	1	1	2	2		3	3

Values for Grundy function

Let's compute the first 10 or so values of the Grundy function

- $\mathcal{G}\left(G_{0}\right)=\mathcal{G}\left(G_{1}\right)=\mathcal{G}\left(G_{2}\right)=0$
- $\mathcal{G}\left(G_{n}\right)=\operatorname{mex}\left\{\mathcal{G}\left(G_{i-1}\right) \oplus \mathcal{G}\left(G_{n-i-2}\right) \left\lvert\, 1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor\right.\right\}$
- $\mathcal{G}\left(G_{3}\right)=\operatorname{mex}\left\{\mathcal{G}\left(G_{0}\right) \oplus \mathcal{G}\left(G_{0}\right)\right\}=\operatorname{mex}\{0\}=1$
- $\mathcal{G}\left(G_{4}\right)=\operatorname{mex}\left\{\mathcal{G}\left(G_{0}\right) \oplus \mathcal{G}\left(G_{1}\right), \mathcal{G}\left(G_{1}\right) \oplus \mathcal{G}\left(G_{0}\right)\right\}=\operatorname{mex}\{0\}=1$

n	0	1	2	3	4	5	6	7	8	9	10
$\mathcal{G}\left(G_{n}\right)$	0	0	0	1	1	1	2	2	0	3	3

Values for Grundy function

Let's compute the first 10 or so values of the Grundy function

- $\mathcal{G}\left(G_{0}\right)=\mathcal{G}\left(G_{1}\right)=\mathcal{G}\left(G_{2}\right)=0$
- $\mathcal{G}\left(G_{n}\right)=\operatorname{mex}\left\{\mathcal{G}\left(G_{i-1}\right) \oplus \mathcal{G}\left(G_{n-i-2}\right) \left\lvert\, 1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor\right.\right\}$
- $\mathcal{G}\left(G_{3}\right)=\operatorname{mex}\left\{\mathcal{G}\left(G_{0}\right) \oplus \mathcal{G}\left(G_{0}\right)\right\}=\operatorname{mex}\{0\}=1$
- $\mathcal{G}\left(G_{4}\right)=\operatorname{mex}\left\{\mathcal{G}\left(G_{0}\right) \oplus \mathcal{G}\left(G_{1}\right), \mathcal{G}\left(G_{1}\right) \oplus \mathcal{G}\left(G_{0}\right)\right\}=\operatorname{mex}\{0\}=1$

n	0	1	2	3	4	5	6	7	8	9	10
$\mathcal{G}\left(G_{n}\right)$	0	0	0	1	1	1	2	2	0	3	3

Values for Grundy function

Let's compute the first 10 or so values of the Grundy function

- $\mathcal{G}\left(G_{0}\right)=\mathcal{G}\left(G_{1}\right)=\mathcal{G}\left(G_{2}\right)=0$
- $\mathcal{G}\left(G_{n}\right)=\operatorname{mex}\left\{\mathcal{G}\left(G_{i-1}\right) \oplus \mathcal{G}\left(G_{n-i-2}\right) \left\lvert\, 1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor\right.\right\}$
- $\mathcal{G}\left(G_{3}\right)=\operatorname{mex}\left\{\mathcal{G}\left(G_{0}\right) \oplus \mathcal{G}\left(G_{0}\right)\right\}=\operatorname{mex}\{0\}=1$
- $\mathcal{G}\left(G_{4}\right)=\operatorname{mex}\left\{\mathcal{G}\left(G_{0}\right) \oplus \mathcal{G}\left(G_{1}\right), \mathcal{G}\left(G_{1}\right) \oplus \mathcal{G}\left(G_{0}\right)\right\}=\operatorname{mex}\{0\}=1$

n	0	1	2	3	4	5	6	7	8	9	10
$\mathcal{G}\left(G_{n}\right)$	0	0	0	1	1	1	2	2	0	3	3

Structure of Values

Questions to be answered:

1. Is the sequence of Grundy values $\mathcal{G}\left(G_{n}\right)$ periodic?
2. Is the sequence of Grundy values $\mathcal{G}\left(G_{n}\right)$ ultimately periodic?

Beginnings

Equivalent Game

Grundy Function for Ellie

Values of $\mathcal{G}(n)$

Frequencies of $\mathcal{G}(n)$

10000 values of $\mathcal{G}(n) ;$ max val $=262 ;$ max freq $=202$

Frequencies of $\mathcal{G}(n)$

25000 values of $\mathcal{G}(n) ;$ max val $=392 ;$ max freq $=372$

Octal Games

Definition

An octal game is a 'take-and-break' game identified by a code of the form.$d_{1} d_{2} d_{3} \ldots$ with $0 \leq d_{i} \leq 7$. A typical move consists of choosing one of the heaps and removing i tokens from the heap, then rearranging the remaining tokens into some allowed number of new heaps. The code describes the allowed moves in the game:

- If $d_{i} \neq 0$, then an allowed move is to take i tokens from a heap.
- Writing $d_{i} \neq 0$ in base 2 then shows how the i tokens may be taken: If $d_{i}=c_{2} \cdot 2^{2}+c_{1} \cdot 2^{1}+c_{0} \cdot 2^{0}$, then removal of the i tokens may $\left(c_{j}=1\right)$ or may not $\left(c_{j}=0\right)$ leave j heaps.

Octal Games

Example

The octal game $\mathbf{. 1 7}$ allows us to take either 1 or 2 tokens.

- $d_{1}=1=0 \cdot 2^{2}+0 \cdot 2^{1}+\mathbf{1} \cdot 2^{0}$, therefore we are allowed to leave zero heaps when taking one token, that is, we can take away a heap that consists of a single token.
- $d_{2}=7=\mathbf{1} \cdot 2^{2}+\mathbf{1} \cdot 2^{1}+\mathbf{1} \cdot 2^{0}$, therefore we are allowed to leave either two, one or no heaps when taking two tokens, that is, we can take away a heap that consists of two tokens, we can remove two tokens from the top of a heap (leaving one heap), or can take two tokens and split the remaining heap into two non-zero heaps.

Ellie = ?

Since we can only take three tokens at a time, $d_{i}=0$ for $i \neq 3$. When we place a tile, it can be

- at the end (leaving one heap),
- in the middle of the board (leaving two heaps), or
- covering the last three squares, leaving zero heaps.
\Rightarrow Ellie $=007$

Ellie = ?

Since we can only take three tokens at a time, $d_{i}=0$ for $i \neq 3$. When we place a tile, it can be

- at the end (leaving one heap),
- in the middle of the board (leaving two heaps), or
- covering the last three squares, leaving zero heaps.
\Rightarrow Ellie $=.007$

Treblecross $=.007$

- Treblecross is Tic-Tac-Toe played on a $1 \times n$ board in which both players use the same symbol, X . The first one to get three X 's in a row wins.
- Don't want to place an X next to or next but one to an existing X, otherwise opponent wins immediately
- If only considering sensible moves, one can think of each X as also occupying its two neighbors

What is known about .007

- No complete analysis
- $\mathcal{G}\left(G_{n}\right)$ computed up to $n=2^{21}=2,097,152$
- Maximum Grundy value in that range is $\mathcal{G}(1,683,655)=1,314$
- Last new Grundy value to occur is $\mathcal{G}(1,686,918)=1,237$
- Most frequent value is 1024 , which occurs 63,506 times
- Second most frequent value is 1026, which occurs 62,178 times
- $37 \mathcal{P}$ positions: $0,1,2,8,14,24,32,34,46,56,66,78,88,100$, $112,120,132,134,164,172,186,196,204,284,292,304,358$, 1048, 2504, 2754, 2914, 3054, 3078, 7252, 7358, 7868, 16170

What now????

- Looked at Misère version of the game (last player to move loses), but that is hopeless....
- Tried to see what happens on $3 \times n$ Ellie board - very tough
- Decided to leave Ellie and move on to greener (?) pastures

Circular (n, k) Games

n heaps in a circular arrangement. Select k consecutive heaps and select at least one token from at least one of the heaps

-

Circular $(6,3)$ game

Question: What is the structure of the set of losing positions?

Variations

- Select a fixed number a from each of the heaps
- Select at least one token from each of the k heaps
- Select at least a tokens from each of the k heaps

Thank You!

For Further Reading

E Elwyn R. Berlekamp, John H. Conway and Richard K. Guy. Winning Ways for Your Mathematical Plays, Vol 1 \& 2. Academic Press, London, 1982.

Q Michael H. Albert, Richard J. Nowakowski, and David Wolfe.
Lessons in Play.
AK Peters, 2007.
R I. Caines, C. Gates, R.K. Guy, and R. J. Nowakowski. Periods in Taking and Splitting Games. American Mathematical Monthly, April:359-361, 1999.
A. Gangolli and T. Plambeck.

A Note on periodicity in Some Octal Games.
International Journal of Game Theory, 18:311-320, 1989.

