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Abstract17

The strong chromatic index of a graph G, denoted by χ′
s(G), is the18

minimum number of vertex induced matchings needed to partition the edge19

set of G. Let T be a tree without vertices of degree 2 and have at least20

one vertex of degree greater than 2. We construct a Halin graph G by21

drawing T on the plane and then drawing a cycle C connecting all its leaves22

in such a way that C forms the boundary of the unbounded face. We call23

T the characteristic tree of G. Let G denote a Halin graph with maximum24

degree ∆ and characteristic tree T . We prove that χ′
s(G) 6 2∆ + 1 when25

∆ > 4. In addition, we show that if ∆ = 4 and G is not a wheel, then26

χ′
s(G) 6 χ′

s(T ) + 2. A similar result for ∆ = 3 was established by Lih and27

Liu [25].28
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1. Introduction31

Let G be a simple graph. The distance between two edges e and e′ in G is the32

minimum k for which there is a sequence e = e0, e1, . . . , ek = e′ of distinct edges33

such that for 1 6 i 6 k, ei−1 and ei share an end vertex. A strong edge-coloring34

of a graph is a function that assigns to each edge a color such that any two edges35

with distance at most two must receive different colors. A strong k-edge-coloring36

is a strong edge-coloring using k colors. The strong chromatic index of a graph37

G, denoted by χ′s(G), is the minimum k such that G admits a strong k-edge-38

coloring. The pre-image of each color in a strong edge-coloring is an induced39

matching. Thus, the strong chromatic index is also the minimum number of40

vertex induced matchings needed to partition the edge set of G.41

Denote the maximum degree of a graph G by ∆(G) (or, simply by ∆ when42

G is clear in the context). A trivial upper bound is that χ′s(G) 6 2∆(G)2 −43

2∆(G) + 1. Fouquet and Jolivet [16] established a Brooks type upper bound44

χ′s(G) 6 2∆(G)2 − 2∆(G), which is not true only for G = C5 as pointed out by45

Shiu and Tam [31]. The following conjecture was posed by Erdős and Nešetřil46

[13, 14]:47

Conjecture 1. For any graph G of maximum degree ∆,48

χ′s(G) 6

{
5
4∆2 if ∆ is even;
5
4∆2 − 1

2∆ + 1
4 if ∆ is odd.

49

For graphs with maximum degree ∆(G) = 3, Conjecture 1 was verified by An-50

dersen [1] and by Horák, Qing and Trotter [22], independently. For ∆(G) = 4,51

while Conjecture 1 asserts that χ′s(G) 6 20, Horák [21] obtained χ′s(G) 6 23 and52

Cranston [11] proved χ′s(G) 6 22. For general graphs G with maximum degree ∆,53

Molloy and Reed [28] showed that χ′s(G) 6 1.998∆2. Most recently, this bound54

has been improved by Bruhn and Joos [6] to 1.93∆2.55

Strong edge-coloring for planar graphs has been investigated by many au-56

thors. Fouquet and Jolivet [16, 17] first studied strong edge-coloring for cubic57

planar graphs. Let G be a planar graph with maximum degree ∆ and girth g.58

Faudree et al. [15] proved that χ′s(G) 6 4∆ + 4. Bensmail et al. [2] established59

the bound χ′s(G) 6 3∆ + 1 for g > 6. Hudák et al. [23] showed χ′s(G) 6 3∆ if60

g > 7, and the bound is sharp for some subcubic (that is, ∆ 6 3) planar graphs.61

Furthermore, Hocquard et al. [19] showed that χ′s(G) 6 9 for subcubic planar62

graphs G which do not contain cycles of lengths 4 or 5. DeOrsey et al. [12] re-63

cently reduced this bound to χ′s(G) 6 5 if g > 30. For planar graphs with large64

girth, Borodin and Ivanova [3] established a rather tight bound χ′s(G) 6 2∆− 165

if g > 40b∆/2c+ 1; Chang et al. [10] further confirmed that the bound also holds66

if g > 10∆ + 46. Clearly, the bound χ′s(G) 6 2∆ − 1 becomes sharp when G67

contains two adjacent vertices of maximum degree ∆.68
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By definition, a trivial lower bound of χ′s(G) for a graph G would be σ(G),69

where70

σ(G) := max{deg(u) + deg(v)− 1 | uv ∈ E(G)}.71

If G has no edges, then define σ(G) = 0. It is known and easy to verify that72

for a tree T , we have χ′s(T ) = σ(T ). Wu and Lin [32] proved that if σ(G) 6 473

and G is not isomorphic to the graph of the 5-cycle with a chord connecting two74

non-adjacent vertices, then χ′s(G) 6 6. Recently, Chang and Duh [8] assert that75

χ′s(G) = σ(G) if G is a planar graph with σ(G) = σ > 5, σ > ∆(G)+2, and girth76

g > 5σ+ 16. This result implies that a planar graph with large girth behaves like77

a tree locally.78

A Halin graph is a plane graph G constructed as follows. Let T be a tree with79

at least 4 vertices, called the characteristic tree of G. All vertices of T are either80

of degree 1, called leaves, or of degree at least 3. We draw T on the plane. Let C81

be a cycle, called the adjoint cycle of G, connecting all leaves of T in such a way82

that C forms the boundary of the unbounded face. We usually write G = T ∪C83

to reveal the characteristic tree and the adjoint cycle. For n > 3, the wheel Wn84

with n + 1 vertices is a particular Halin graph whose characteristic tree is the85

complete bipartite graph K1,n (called a star). A graph is said to be cubic if the86

degree of every vertex is 3. For h > 1, a cubic Halin graph Neh, called a necklace,87

was introduced in [30]. Its characteristic tree T consists of the path v0, v1, . . . ,88

vh, vh+1 and leaves v′1, v
′
2, . . . , v

′
h such that the unique neighbor of v′i in T is vi89

for 1 6 i 6 h and vertices v0, v
′
1, . . . , v

′
h, vh+1 are connected in this order to form90

the adjoint cycle Ch+2.91

Lai, Lih and Tsai [24] proved the following result:92

Theorem 2 [24]. If a Halin graph G = T ∪C is different from a certain necklace93

Ne2 and any wheel Wn, n 6≡ 0 (mod 3), then χ′s(G) 6 χ′s(T ) + 3.94

For cubic Halin graphs, Lih and Liu improved the above bound as follows:95

Theorem 3 [25]. A cubic Halin graph G different from Ne2 or Ne4 satisfies96

χ′s(G) 6 7.97

The exact values of χ′s(G) for special families of cubic Halin graphs were deter-98

mined by Shiu and Tam [31] and by Chang and Liu [9].99

For a Halin graph G = T ∪C with maximum degree ∆, since χ′s(T ) 6 2∆−1,100

the bound in Theorem 2 implies that χ′s(G) 6 2∆ + 2. We improve this bound101

and establish a similar result of Theorem 3 for Halin graphs of maximum degree102

4.103

Theorem 4. Let G be a Halin graph with maximum degree ∆ > 4. Then χ′s(G) 6104

2∆ + 1.105
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Theorem 5. Let G = T ∪C be a Halin graph with maximum degree ∆ = 4, and106

let G be different from a wheel. Then χ′s(G) 6 χ′s(T ) + 2.107

Both bounds in Theorems 4 and 5 are sharp. Consider the graph G in108

Figure 1. A strong edge-coloring of G must use at least 7 colors on the edges109

incident to u or v. Let these colors be {1, 2, . . . , 7}. Next, since the edges w1110

and w2 must use colors different from {1, 2, . . . , 7}, at least 8 colors are needed.111

Assume we only have 8 colors. Then w1 and w2 must be colored by the same new112

color, say color 8. This implies that the four edges e1, e2, e3, e4 shown in Figure 1113

only have three admissible colors, from the set {5, 6, 7}, which is a contradiction114

as these edges must receive different colors. Hence χ′s(G) > 9. By coloring e1, e2,115

e3, e4 with colors 5, 6, 7, 9 and the last edge with color 4 it follows that χ′s(G) = 9.116

This example shows that both bounds in Theorems 4 and 5 are sharp.117

2
u

4
v

6

w2e4

e1 w1

e2

e3

3

1

7

5

Figure 1.: An example showing sharp bounds of Theorems 4 and 5.

2. Proof of Theorem 4118

A double star is a tree with exactly two non-leaf vertices. Denote Da,b a double119

star where a 6 b are the degrees of the two non-leaf vertices. Prior to the proof120

of Theorem 4, we quote several known results as follows.121

Lemma 6 [24]. Let G = T ∪ C be a Halin graph. If T = Da,b is a double star122

with a 6 b, then123

χ′s(G) =


χ′s(T ) + 4 if a = b = 3;
χ′s(T ) + 2 if a = 3 and b > 4;
χ′s(T ) + 1 if a > 4.

124

If T = K1,k (that is, G is a wheel Wk), then125

χ′s(Wk) =


k + 3 if k ≡ 0 (mod 3);
k + 5 if k = 5;
k + 4 otherwise.

126
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Lemma 7 [30]. Suppose h > 1. Then127

χ′s(Neh) =


6 if h is odd;
7 if h > 6 and h is even;
8 if h = 4;
9 if h = 2.

128

Proof of Theorem 4. Let G = T ∪C be a Halin graph with ∆(G) > 4. If T is a129

star or a double star, by Lemma 6, the conclusion of Theorem 4 follows. Assume130

that T is neither a star nor a double star. We proceed by induction on |C|, the131

length of C. The shortest length of C is 6. Three possible graphs along with132

their corresponding strong edge-colorings satisfying the desired upper bounds are133

shown in Figure 2. So the result follows.134

5 7

3

87

6

2
4

6
2

1

3 5 1

(a)

7 8

3

78

6

1

2

2

1

5

4
3

6

(b)

2

5
4

3

8

1

7

1
3 6

2

4 5

7

(c)

Figure 2.: All Halin graphs with |C| = 6 and ∆(G) = 4.

Assume |C| > 7. Let P = u0, u1, . . . , ul be a longest path in T with length l.135

As T is neither a star nor a double star, so l > 4. Without loss of generality, we136

assume degG(ul−1) > degG(u1).137

Denote u1 = v, u2 = u, u3 = w, and label the k > 2 leaf neighbors of v as138

v1, v2, . . . , vk. Since P is a longest path in T , it is easy to see that v1, v2, . . . , vk139

must be on the adjoint cycle C. Let x1, x2, y1, y2 be vertices on C, where x1 is140

adjacent to v1 and x2; y1 is adjacent to vk and y2. Let x3 and y3 be vertices not141

on C, where x1x3 and y1y3 are edges in T (see Figure 3).142

Since G is a Halin graph and u is a vertex of degree at least 3, there exists a143

path P ′ in T from u to x1 or from u to y1 with P ∩ P ′ = {u}. Without loss of144

generality, we shall assume that P ′ is from u to y1. By our assumption that P is145

a longest path, it must be that |P ′| 6 2. Thus, either u = y3 or u is adjacent to146

y3.147

In the following, we denote by G′ = T ′ ∪ C ′ the Halin graph obtained by148

adding some new edges to an induced subgraph of G such that |C ′| < |C| and149

∆(G′) 6 ∆(G). If ∆(G′) > 4 then χ′s(G
′) 6 2∆(G) + 1 holds because T ′ is a star150

or double star (see the beginning of the proof) or by the inductive hypothesis as151

|C ′| < |C|. If ∆(G′) = 3 then χ′s(G
′) 6 9 6 2∆(G) + 1 by Theorem 2, Lemma152
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v1

v u w

y2y1

vk

v3

v2

x1 x2

x3

y3

P

Figure 3.: The neighborhood around one end of the longest path P .

6, and because ∆(G) > 4. In the following case analysis these steps will be153

repeatedly used, while may not be mentioned explicitly all the time.154

We call G′ a reduction of G. Depending on various situations, different types155

of G′ are created. In the corresponding figures, the dashed lines represent new156

edges added in G′, and dark vertices represent the vertices that are temporarily157

deleted from G.158

Let ψ be a strong edge-coloring of G′ using the minimum number of colors.159

A strong edge-coloring φ of G is obtained as follows. We color the edges that are160

in both G and G′ by the same colors used in ψ, i.e., let φ(e) = ψ(e) for every161

e ∈ E(G) ∩ E(G′). For edges in e ∈ E(G) \ E(G′), we develop different coloring162

schemes for different cases, and in each case, we give a strong edge-coloring φ for163

G with at most 2∆(G) + 1 colors.164

Case A. degG(v) = 3 There are three possibilities to consider.165

A.1. u = y3. Obtain the reduction G′ of G by adding two new edges vx1 and vy1166

to the induced subgraph of G on the vertex set V (G) \ {v1, v2}, as indicated in167

Figure 4. Clearly, ∆(G′) = ∆(G) > 4 and |C ′| < |C|.168

v
r1

u w

y2
sy1

2

v2

w3

v1
1

x1
t1 x2

x3t2

w1

w2

r2

1

2

Figure 4.: Case A.1.
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Without loss of generality, assume that ψ(vx1) = 1 and ψ(vy1) = 2. Let169

φ(v1x1) = 1 and φ(v2y1) = 2. See Figure 4. We find admissible colors w1,170

w2, and w3, one by one. The colors that can not be assigned to vv1 are from171

{1, 2, t1, t2} and the labels used by edges incident to u. Therefore, there are172

at most ∆(G) + 4 forbidden colors for vv1. Since ∆(G) > 4, there exists an173

admissible color for vv1. Color vv1 by such an admissible color w1.174

Next we color vv2 which has the forbidden colors in {1, 2, w1, s} and the175

labels used for edges incident to u. Similarly, we can find an admissible color for176

vv2. Finally, the forbidden colors for v1v2 are in {1, 2, w1, w2, r1, r2, s, t1, t2}. If177

s ∈ {t1, t2}, then there is an admissible color for v1v2. Otherwise, we re-color vv1178

by s, creating an admissible color for v1v2.179

A.2. u is adjacent to y3, and ∆(G) > 5. Obtain the reduction G′ in the same way180

as Case A.1, as indicated in Figure 5. Clearly, ∆(G′) = ∆(G) > 4 and |C ′| < |C|.181

v
r

u w

y2s1
y1

2

v2

w3

v1
1

x1
t1 x2

x3t2

w1

w2

y3
s2

1

2

Figure 5.: Case A.2.

Without loss of generality, assume that ψ(vx1) = 1 and ψ(vy1) = 2. Let182

φ(v1x1) = 1 and φ(v2y1) = 2 (see Figure 5). We find admissible colors w1, w2,183

and w3, one by one. By the same argument in Case A.1, one can easily show that184

there exists an admissible color w1. Color vv1 by such an admissible color.185

Next we color vv2 which has the forbidden colors in {1, 2, w1, s1, s2} and the186

labels used for edges incident to u. Since ∆(G) > 5, we can find an admissible187

color w2. Finally, the forbidden colors for v1v2 are in {1, 2, w1, w2, r, s1, s2, t1, t2}.188

Thus, there exists an admissible color w3.189

A.3. u is adjacent to y3, and ∆(G) = 4. Then degG(y3) is either 3 or 4. Obtain190

the reduction G′ from G with partial labels to some vertices as indicated in Fig-191

ure 6(a) and 6(b), respectively. Clearly, ∆(G′) 6 ∆(G) and |C ′| < |C|. Assume192

that degG(y3) = 3. Then ∆(G′) = ∆(G) = 4. We find admissible colors w1, w2,193

and w3, one after another. For v1v2, the forbidden colors are in {1, 2, 3, r1, t1, t2}.194

Hence there is an admissible color w1 for v1v2. Next, the forbidden colors for195

y1y2 are in {1, 2, 3, w1, r2, s1, s2}. We can color y1y2 by an admissible color w2.196
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Finally, the forbidden colors for v2y1 are in {1, 2, 3, w1, w2, r1, r2}. Again, there197

exists an admissible color w3 for v2y1.198

v
r1

u w

y3

2

y2

w2y1

w3

v2

w1

v1

1
x1

t1 x2

t2 x3

2

3 r2

1

3 z1
s1 z2

s2 z3

1

2

3

(a) degG(y3) = 3.

v
4

u w

z2
s1z13z

w3
y24

y1

w4

v2

w2

v1

1
x1

t1 x2

t2 x3

2

3
ry3

w1

1 2 s2 z3

1

2

3

(b) degG(y3) = 4.

Figure 6.: Case A.3.

Assume degG(y3) = 4. Note, even if ∆(G′) = 3 or T ′ is a star (or double199

star), we can still find a strong edge coloring for G′ by up to 9 colors. The200

forbidden colors for y1y3 are in {1, 2, 3} and labels used on edges incident to u.201

Thus there are at most ∆(G)+3 forbidden colors. We color y1y3 by an admissible202

color w1. Next, the forbidden colors for v1v2 are {1, 2, 3, 4, w1, t1, t2}. Because203

2∆(G) + 1 > 9, we can find an admissible color w2 for v1v2. The forbidden colors204

for y2z are in {1, 2, 3, 4, w1, r, s1, s2}. Again, there is an admissible color w3 for205

y2z. Finally, the forbidden colors for v2y1 are from {1, 2, 3, 4, w1, w2, w3, r}. So206

there is an admissible color w4 for v2y1.207

Case B. degG(v) > 4 We consider two cases separately.208

B.1. ∆(G) = 4. Then degG(v) = 4. There are two subcases.209

Subcase B.1.1. degG(u) = 3. Obtain the reduction G′ of G by adding two new210

edges vx1 and vy1 to the induced subgraph of G on the vertex set V (G) \211

{v1, v2, v3} as depicted in Figure 7.212

Since we assumed earlier that degG(ul−1) > degG(u1) = degG(v) = 4, we213

have ∆(G′) = ∆(G) = 4, and |C ′| < |C| holds. We fix colors on some edges as214

shown on Figure 7. Note that in Figure 7(a) we assign φ(y1y2) = φ(vv2) = 3215

but in Figure 7(b) we assign φ(y1y3) = φ(vv2) = 3 and φ(y1y2) = s. We find216

admissible colors w1, w2, w3, and w4.217

For the subcase depicted in Figure 7(a), the forbidden colors for vv1 are in218

{1, 2, 3, t1, t2} and the three colors used in the neighborhood of u. Thus, there219

are at most 8 forbidden colors, implying there is an admissible color w1 for vv1.220

Next, the forbidden colors for vv3 are in {1, 2, 3, w1} and the three colors used in221

the neighborhood of u. There is an admissible color w2 for vv3. The forbidden222
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v
r1

u w

y2
3y1

2
v3

w4

v2

w3

v1
1

x1 t1

x2

t2
x3

w2

w1

3

r2

1

2

(a) u = y3.

v
r1 u w

y3

y2
r2y1

2
v3

w4

v2

w3

v1
1

x1 t1

x2

t2
x3

w2

w1

3

3

1

2

(b) u ∼ y3.

Figure 7.: Subcase B.1.1.

colors for v1v2 are in {1, 2, 3, w1, w2, r1, t1, t2}, so there is an admissible color w3223

for v1v2. Finally, the forbidden colors for v2v3 are in {1, 2, 3, w1, w2, w3, r1, r2}.224

Therefore, there is an admissible color w4 for v2v3.225

For the subcase depicted in Figure 7(b), the arguments are the same as in226

Figure 7(a) except for vv3, which has forbidden colors from {1, 2, 3, w1, r2} and227

the three colors used in the neighborhood of u. So there is an admissible color228

w2 for vv3.229

Subcase B.1.2. degG(u) = 4. We distinguish several cases. In each case ∆(G′) 6230

∆(G) and |C ′| < |C| hold.231

(1) u = y3, u is adjacent to neither x1 nor x3, and |{ψ(uw), ψ(uz)}∩{ψ(x1x2),232

ψ(x1x3)}| 6 1, where z is the fourth neighbor of u, as shown in Figure 8(a). With-233

out loss of generality, assume that ψ(uz) 6∈ {ψ(x1x2), ψ(x1x3)}. Let φ(v1v2) =234

ψ(uz) = 3 and φ(v2v3) = ψ(uw) = 4, as indicated in Figure 8(a). Note, t1, t2 6= 3.235

The forbidden colors for vv1 are in {1, 2, 3, 4, 5, 6, t1, t2}. So there is an admis-236

sible color for w1. Next, the forbidden colors for w2 are in {1, 2, 3, 4, 5, 6, w1, s}.237

Again, there is an admissible color for w2. The forbidden colors for w3 are in238

{1, 2, 3, 4, 5, 6, w1, w2}, so there is an admissible color for w3.239

(2) u = y3, u is adjacent to neither x1 nor x3, and {ψ(uw), ψ(uz)} =240

{ψ(x1x2), ψ(x1x3)}, where z is the fourth neighbor of u. Without loss of gen-241

erality, we assume that ψ(x1x2) = ψ(uw) = 5 and ψ(x1x3) = ψ(uz) = 7. Let242

ψ(uv) = 3, φ(v1v2) = ψ(uy1) = 4, φ(v2v3) = 5, and φ(vv2) = ψ(y1y2) = 6, as243

indicated in Figure 8(b). Clearly, the remaining edges vv1 and vv3 can be colored244

by any two colors not in the set {1, 2, 3, . . . , 7}.245

(3) u = y3 and u = x3 (that is, u is adjacent to both y1 and x1). Let246

φ(v1v2) = ψ(uy1) = 3, φ(v2v3) = ψ(uw) = 4 and φ(vv2) = ψ(y1y2) = 5 as247

indicated in Figure 8(c). We find admissible colors w1 and w2. The forbidden248

colors for vv1 are in {1, 2, 3, 4, 5, 6, 7, t1}. Hence, there is an admissible color w1249
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v
5

u
4

w

y2
sy1

2

v3
4

v2

3
v1

1
x1 t1

x2

t2 x3
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w1

w3

6
3

z

1
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(a) Condition (1).

v
3

u
5

w

y2
6y1

2

v3
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v2

4
v1

1
x1 5

x2

7 x3

6

4
7
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1
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(b) Condition (2).

v
7

u
4

w

y2
5y1

2

v3
4

v2

3
v1

1
x1 t1

x2

6

w2

w1

5

3

1
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(c) Condition (3).
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7

w

y3

1

y24

y1
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v3
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5
v1

1
x1 x2

6

3
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5

w3
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s2
z3

2

1

2
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(d) Condition (5).

v 4 u
6

w

y3

w2

y27

y1
6

v3
5

v2

7
v1

1
x1

x2 z2

3

2

w3

x3

5

1

w1 z1 3 z3
s1 z4

s2

z5
2

7
1

2

3

(e) Condition (7).

Figure 8.: Subcase B.1.2.
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for vv1. Then the forbidden colors for vv3 are in {1, 2, 3, 4, 5, 6, 7, w1}. Thus,250

there is an admissible color w2 for vv3.251

(4) u is adjacent to y3, u = x3, and degG(y3) = 3. (Symmetrically, u is252

adjacent to x3, u = y3, and degG(x3) = 3.) Take P = y1, y3, u, w, u4, . . . , ul as253

a longest path, and such a graph was discussed in Subcase A.3 (see Figure 6(b)254

where the positions of y3 and v are switched).255

(5) u is adjacent to y3, u = x3, and degG(y3) = 4. Let z be the fourth neigh-256

bor of y3. (Symmetrically, u is adjacent to x3, u = y3, and degG(x3) = 4.) The257

reduction G′ and partial labels are shown in Figure 8(d). The forbidden colors for258

vv2 are in {1, 2, 3, 4, 5, 6, 7}. Hence, there is an admissible color w1 for vv2. The259

forbidden colors for y2z are in {1, 2, 3, 4, 5, 7, s1, s2}. Thus, there is an admissi-260

ble color w2 for y2z. The forbidden colors for y1y3 are from {1, 2, 3, 4, 5, 6, 7, w2},261

leaving an admissible color w3 for y1y3.262

(6) u is adjacent to both x3 and y3, and degG(x3) = 3 or degG(y3) = 3. Say263

degG(x3) = 3 (the other case is symmetric). Then take P = x1, x3, u, w, u4, . . . , ul264

as a longest path, and such case has been discussed in Case A (see Figure 6).265

(7) u is adjacent to both x3 and y3, and degG(x3) = degG(y3) = 4. The266

reduction G′ and partial labels are indicated in Figure 8(e). Since degG(ul−1) >267

degG(v) = 4, we have ∆(G′) = ∆(G). The forbidden colors for y2z1 are from268

{1, 2, 3, 5, 6, 7, s1, s2}. Hence, there is an admissible color w1 for y2z1. The for-269

bidden colors for y2y3 are in {1, 2, 3, 4, 5, 6, 7, w1}. Thus, there is an admissible270

color w2 for y2y3. The forbidden colors for vv2 are from {1, 2, 3, 4, 5, 6, 7}. So271

there is an admissible color w3 for vv2.272

(8) u is adjacent to y3, but not x1 nor x3. Then u must have another neighbor,273

say z, besides y3, that is a leaf or distance one away from the adjoining cycle C.274

The position of z will be similar to the one on Figure 8(b) (where z might be on275

the cycle). We then consider the longest path P ∗ = y1y3u . . . ul, which falls in276

one of the cases discussed earlier.277

B.2. ∆(G) > 5. Obtain the reduction G′ by adding two new edges vx1 and vy1278

to the induced subgraph of G on the vertex set V (G) \ {v1, v2, . . . , vk}, k > 3,279

as shown in Figure 9. Since degG(ul−1) > degG(v), we have ∆(G) = ∆(G′),280

and |C ′| < |C| holds. Without loss of generality, let φ(v1x1) = ψ(vx1) = 1 and281

φ(vky1) = ψ(vy1) = 2.282

For u = y3 (or u is adjacent to y3, respectively), let φ(vv2) = ψ(y1y2) = 3283

(φ(vv2) = ψ(y1y3) = 3, respectively) as indicated in Figure 9(a) (Figure 9(b),284

respectively). If degG(v) = 4, then the coloring scheme is the same as the ones285

used in Subcase B.1.1.286

Thus we assume degG(v) > 5. We proceed to color the remaining edges, vv1,287

vv3, . . . , vvk and vjvj+1, for j = 1, 2, . . . , k − 1.288

For u = y3 (see Figure 9(a)), the forbidden colors for vv1 are {1, 2, 3, t1, t2}289

and colors used in the neighborhood of u. So there are at most ∆(G)+5 6 2∆(G)290
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v u w

y23y1

2
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v3
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v1
1

x1 t1
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2

(a) u = y3.

v u w

y3

y2
sy1

2
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v3

v2

v1
1

x1 t1
x2

t2
x3

3

3

1

2

(b) u ∼ y3.

Figure 9.: Case B.2.

forbidden colors. Hence, there exists an admissible color for vv1. Next we color291

vvk, which has forbidden colors {1, 2, 3, φ(vv1)} and the labels used for edges292

incident to u. Again, there is an admissible color for vvk. For i = 3, 4, . . . , k − 1,293

we color vvi one after another. By direct calculation, the number of forbidden294

colors for vvi is at most degG(u)+ degG(v). Hence, we can color all vvi by295

admissible colors.296

Next we color v1v2, which has forbidden colors {1, t1, t2} and colors used297

in the neighborhood of v. Hence there is an admissible color for v1v2. Next298

we sequentially color vjvj+1 for j = 2, 3, . . . , k − 2. Using the assumption that299

∆(G) > 5, one can easily verify that there exists an admissible color at each step.300

Finally, the forbidden colors for vk−1vk are {2, s, φ(vk−2vk−1), φ(vk−3vk−2)} and301

the labels used in the neighborhood of v. Thus we can find an admissible color302

for vk−1vk.303

For the case that u is adjacent to y3, the argument is the same except for304

the edge vvk, which has forbidden colors from {1, 2, 3, s, φ(vv1)} and the labels305

used by the edges incident to u. As ∆(G) > 5, we can find an admissible color306

for vvk. This completes the proof of Theorem 4.307

3. Proof of Theorem 5308

Let G = T ∪ C be a Halin graph with ∆(G) = 4, and let G be different from309

a wheel. By Theorem 4, if χ′s(T ) = 7, then χ′s(G) 6 χ′s(T ) + 2. So Theorem 5310

holds. Thus we assume χ′s(T ) = 6. That is, every vertex of degree 4 is adjacent311

to vertices of degree 3 only. Similarly to the previous section we proceed by312

induction on |C|, the length of C. If |C| = 4, then G = W4 which contradicts313
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the assumption. If |C| = 5, then T = D3,4 is a double star. The result follows314

by Lemma 6. If |C| = 6, the only three possible graphs are in Figure 2(a), 2(b),315

and 2(c). So the result follows.316

Similarly to the proof of Theorem 4, we consider a reduction G′ = T ′ ∪C ′ of317

G with characteristic tree T ′ and adjoint cycle C ′. If ∆(G′) = 4 and G′ is not a318

wheel, then χ′s(G
′) 6 χ′s(T

′) + 2 6 χ′s(T ) + 2 follows by the induction hypothesis319

since |C ′| < |C|. If G′ = W4 or if G′ is a cubic Halin graph different from Ne2,320

then χ′s(G
′) 6 8 = χ′s(T ) + 2 by Theorem 3, Lemma 6, and Lemma 7. Finally,321

the case when G′ = Ne2 is considered at the end of the proof.322

Assume |C| > 7. Let P = u0, u1, . . . , ul be a longest path in T where l is323

the length of P . The result holds if T is a double star by Lemma 6 (note that324

b > 4). Thus, we assume l > 4. Without loss of generality, we also assume that325

degG(u1) 6 degG(ul−1).326

Case A. There exists a longest path P with both non-leaf ends of degree 4. That327

is, degG(u1) = degG(ul−1) = 4. Then degG(u2) = 3. Consider the following two328

cases.329

A.1. In T , u2 has exactly one neighbor that is a leaf.330

u0

1

u1

w1

u2

3

u3x2

x1

2

3 v0
w5 v1

w2

v2

1

y1

4

y2x3

w4
w3

2

5

y3

2
1

Figure 10.: Case A.1.

The reduction G′ along with proposed colors for some edges are depicted in331

Figure 10. We now find admissible colors w1, w2, w3, w4, and w5. First we can332

find an admissible color w1 for u1u2 that is different from 1, 2 and the colors used333

in the neighborhood of u3. Next, we can find an admissible color w2 for v1v2334

that is not in {1, 2, 3, 4, 5, w1}. Finally, we find three pairwise distinct admissible335

colors w3, w4, w5, which are not in {1, 2, 3, w1, w2}.336

A.2. In T , none of the neighbors of u2 is a leaf.337

Without loss of generality, we assume that the colors assigned by ψ to the338

edges incident to u3 are 3, 4, 5, and 6 (if u3 has degree 3, then we only use colors 3,339

4, and 5, and ignore the respective edge labeled by 6 in Figure 11). Consider two340

possibilities. For the graph depicted in each Figure 11(a) and 11(b) we obtain the341
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1 u1 7
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4 5 6

x2

x1
2

3
8 6 7
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1

y1

y2

54
4 5

y3x3

2 1

(a)

u0

1

u1

7

u2
3

u3
5

x2

x1

2

3 v0 8 v1
6

v2

3

v3

1

y1

y2
x3

5

8 v4
4

y3

2

4

64

2

1

(b)

Figure 11.: Case A.2.

reduction G′ and complete the labeling φ by using only eight colors, respectively.342

Case B. Every longest path P has degG(u1) = 3. That is, at least one non-leaf343

end has degree 3.344

B.1. degG(u2) = 3.345

Subcase B.1.1. In T , u2 has exactly one neighbor that is a leaf.346

u0

1

u1

w1

u2

3

u3

x2

x1

2

3 v1

w2

v2

1

y1

4

y2x3

w3

2

5

y3
t1

t2 t3

2 1

Figure 12.: Subcase B.1.1.

The reduction G′ along with proposed colors for some edges are depicted in347

Figure 12. Note if u3 has degree 3, we simply ignore the edge labeled by t3 in348

Figure 12. We color u1u2 by a color w1 not from {1, 2, 3, t1, t2, t3}. Next, color349

v1v2 by a color w2 not from {1, 2, 3, 4, 5, w1}. Finally, color u1v1 by an admissible350

color w3 not in {1, 2, 3, w1, w2}.351

Subcase B.1.2. In T , none of the neighbors of u2 is a leaf. Then u2 has two neigh-352

bors, denoted as u1 and v4, that are distance one away from the adjoining cycle353

C. First consider the case that v4 has degree 4. Then by our assumption of Case354

B, the degree of the other non-leaf end of the path P must have degree 3. We355
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consider the reverse order of P , denoted as P ∗, as our longest path. That is,356

P ∗ = ul, ul−1, ul−2, . . . , u1, u0, where degG(ul−1) = 3. If P ∗ falls again in Subcase357

B.1.2, degG(ul−2) = 3 and none of the neighbors of ul−2 is a leaf, then by the358

assumption of Case B, every non-leaf neighbor of vl−2 that is distance two away359

from the adjoining cycle C must be degree 3 (for otherwise, there is a longest360

path with both non-leaf ends of degree 4, which was discussed in Case A).361

Therefore, we only need to consider the case that degG(v4) = 3, which is362

shown in Figure 13, where the reduction G′ and partial labels are indicated.363

u0

w6

u1

1

u2

3

u3x2
t1

x1

2

3 v1
w4

v2

w2

v3

1

y1

4

y2

t2

x3

w5

2 v4
w3

5

y3

w1

2

1

Figure 13.: The second possibility of Subcase B.1.2.

We shall find colors for the remaining edges. First, color v3v4 and v1v2 by364

two admissible colors w1 and w2 different from {1, 2, 3, 4, 5}. Next, color v2v4 and365

v1v2 by two admissible colors w3 and w4 not from {1, 2, 3, w1, w2}, and assign u1v1366

the color w5 = w1. Finally color u0u1 by an admissible color w6 different from367

{1, 2, 3, w4, w5, t1, t2}. Since we have 8 colors, this can be accomplished.368

B.2. degG(u2) = 4. Then degG(u3) = 3.369

Subcase B.2.1. In T , u2 has exactly two neighbors that are leaves.370

Consider possible situations depicted in Figure 14. Figure 14(a) shows the371

situation that the two leaves are adjacent on C. We color v2v3 by a color w1 not372

from the set {1, 2, 3, 4, 5, s1, s2}. Next, color u2v2 and u1u2 by two colors w2 and373

w3 not in {1, 2, 3, 4, 5, w1}.374

Now assume the two leaves are not adjacent on C. The length of a longest375

path from u3 to the adjoint cycle C on one side of v1 is at most three, as P is a376

longest path. Suppose the length is one. Then there is only one possibility which377

is shown in Figure 14(b). Color u2v4 by a color w1 not in {1, 2, 3, 4, 5, t1, t2}.378

Color u2v2 by a color w2 not in {1, 2, 3, 4, 5, 6, w1}. Finally, color u1u2 by a color379

w3 not in {1, 2, 3, 4, 5, w1, w2}.380

If there is a path of length two from u3 to the adjoint cycle C, then there381

are two possibilities as shown in Figure 14(c) and Figure 14(d). Assume that the382
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Figure 14.: Five possibilities of Subcase B.2.1.
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colors used in the neighborhood of u4 are from the set {3, 4, 5, 8}. We directly383

color the remaining edges as depicted on those two figures.384

Assume there is a path of length three from u3 to the adjoint cycle C which385

intersects P only at u3. Let u3, v2, v1, v0 be such a path from u3 to C. Then there386

is another longest path in T , P ′ : ul, ul−1, . . . , u3, v2, v1, v0. Assume degG(v1) = 4.387

By our assumption that every longest path has at least one non-leaf end of degree388

3, it must be that degG(ul−1) = 3. We then consider P ∗, the reverse ordering389

of P , namely, P ∗ = ul, ul−1, . . . , u1, u0. Observe that the same situation will not390

occur to P ∗, since if degG(ul−2) = 4, degG(ul−3) = 3, there is a path of length391

three from ul−3 to C (denoted as ul−3, v
′
2, v
′
1, v
′
0), and degG(v′1) = 4, then we392

obtain a longest path v′0, v
′
1, v
′
2, ul−3, . . . , u0 with both non-leaf ends of degree 4,393

which has been discussed in Case A.394

Thus, assume degG(v1) = 3. By symmetry of considering P and P ′, the only395

possibility is drawn in Figure 14(e), in which an extended strong edge-coloring is396

shown using 8 colors.397

Subcase B.2.2. In T , u2 has exactly one neighbor that is a leaf.398
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3 w4 w5
3

1

y1

s1
y2

w2
w1

5 s2

y3
t2

x3

2 1
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Figure 15.: Two possibilities of Subcase B.2.2.

There are two possible situations as shown in Figure 15. In Figure 15(a),399

a strong edge-coloring is given on the extended edges of G′. In Figure 15(b),400

we color the edges by the following sequence: Color the two edges labeled as w1401

by an admissible color not from {1, 2, 3, t1, t2}. Color the two edges labeled as402

w2 by an admissible color not from {1, 2, 3, w1, s1, s2}. Color the edge labeled403

as w3 by an admissible color not from {1, 2, 3, 4, 5, w1, w2}. Finally, color the404

remaining two edges labeled as w4 and w5 by two different admissible colors not405

from {1, 2, 3, w1, w2, w3}.406

Subcase B.2.3. In T , none of the neighbors of u2 is a leaf. The reduction G′ and407

the completion of φ using eight colors are demonstrated in Figure 16. This408

completes all cases.409

We now discuss the situation that the reduction graph G′ is Ne2. Notice that410
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Figure 16.: Subcase B.2.3.

this does not occur in Case A. For Subcase B.1.1, if G′ = Ne2, then G is a cubic411

graph, contradicting our assumption that χ′s(T ) = 6. Similarly, for the second412

possibility in Subcase B.1.2, G′ is not Ne2.413

These leave a total of fourteen possible situations from the first possibility414

(Figure 11(b)) of Subcase B.1.2, as well as Subcases B.2.1, B.2.2 and B.2.3,415

when the reduction graph G′ is Ne2. These fourteen situations are depicted in416

Figure 17, where a strong edge coloring using at most eight colors is given in each417

situation. This completes the proof of Theorem 5.418

Acknowledgment. The authors are grateful of the three anonymous referees for419

careful reading of the manuscript and for helpful constructive comments. Part420

of the work was done when Daphne Liu was visiting the National Center for421

Theoretical Sciences, Taiwan. She is very much thankful for the Center’s great422

hospitality.423

References424

[1] L. D. Andersen, The strong chromatic index of a cubic graph is at most 10 ,425

Discrete Math. 108 (1992) 231–252.426

doi:10.1016/0012-365X(92)90678-9427

[2] J. Bensmail, A. Harutyunyan, H. Hocquard and P. Valicov, Strong edge-428

coloring of sparse planar graphs, Discrete Appl. Math. 179 (2014) 229–234.429

doi:10.1016/j.dam.2014.07.006430

[3] O. Borodin and A. Ivanova, Precise upper bound for the strong edge chro-431

matic number of sparse planar graphs, Discuss. Math. Graph Theory 33432

(2013) 759–770.433



The Strong Chromatic Index of Halin Graphs 19

1
4

3

2 7
8

5

7

1 2

7

1

6

36
5

4

2

4

5

(a) Subcase B.1.2-1.

1
5

7

6 3
2

4

2

48 5
1

4

3

3

5 76

2

1

(b) Subcase B.1.2-2.

6
2

4

5 3
7

1

5 1

4

3

2

51

6

7

8

(c) Subcase B.2.1-1.

6
2

3

5 4
7

1

3
1

5 2

4

15

4 7

2

(d) Subcase B.2.1-2.

5
1

8

4 2
3

7

3

1 5

2
6

4

2

7

8

1

(e) Subcase B.2.1-3.

1
3

2

7 5
1

4

5 3

2

5
1

8

7
6

4
2

4
5

3 8
1

6

(f) Subcase B.2.1-4.

1
4

5

6 2
1

3

5

3

1 5

2

6

4

2
3

54

2

7

8

1

8

(g) Subcase B.2.1-5.

6
2

3

7 5
6

1

5
2

4

56

4

1

7 5
32

1

3

4

8

7

68

(h) Subcase B.2.1-6.

2
3

5

6 8
1

4

1 3

5

2
6

4

5

3

25
1

468

7 8

7

7

(i) Subcase B.2.1-7.

1
3

4

6 2
8

7

5

3

25
1

2
4 7

28

46

3

6

2

7

5
1

5

1

8

(j) Subcase B.2.1-8.

5
1

3

6 4
7

2

4
1

32

7

6

3
2

51

5

6

8

(k) Subcase B.2.2-1.

5
2

6

7 3
5

8 7
4

3

2

6

16

2
3

1

1

5
4

(l) Subcase B.2.2-2.

6
2

7

8 5
3

1

5
2

67

3

2
6

1

4 1

7

4

5

(m) Subcase B.2.2-3.

6
2

5

8 1
6

7

5
1

42

3

2
6

1

4
2

31

3

4
5

6

(n) Subcase B.2.3.

Figure 17.: Fourteen special graphs.



20 Z. Hu, K.-W. Lih and D. D.-F. Liu

[4] V. Borozan, L. Montero and N. Narayannan, Further results on strong edge-434

colourings in outerplanar graphs, Australas. J. Combin. 62 (2015) 35–44.435

doi:10.7151/dmgt.1708436

[5] R. A. Brualdi and J. Q. Massey, Incidence and strong edge colorings of437

graphs, Discrete Math. 122 (1993) 51–58.438

doi:10.1016/0012-365X(93)90286-3439

[6] H. Bruhn and F. Joos, A stronger bound for the strong chromatic index ,440

Electron. Notes in Discrete Math. 49 (2015) 277–284.441

doi:10.1016/j.endm.2015.06.038442

[7] K. Cameron, Induced matchings, Discrete Appl. Math. 24 (1989) 97–102.443

doi:10.1016/0166-218X(92)90275-F444

[8] G. J. Chang and G.-H. Duh, On the precise value of the strong chromatic-445

index of a planar graph with a large girth.446

arXiv: 1508.03052.447

[9] G. J. Chang and D. Liu, Strong edge coloring for cubic Halin graphs, Discrete448

Math. 312 (2012) 1468–1475.449

doi:10.1016/j.disc.2012.01.014450

[10] G. J. Chang, M. Montassier, A. Pêcher and A. Raspaud, Strong chromatic451

index of planar graphs with large girth, Discuss. Math. Graph Theory 34452

(2014) 723–733.453

doi:10.7151/dmgt.1763454

[11] D. Cranston, Strong edge-coloring graphs with maximum degree 4 using 22455

colors, Discrete Math. 306 (2006) 2772–2778.456

doi:10.1016/j.disc.2006.03.053457

[12] P. DeOrsey, J. Diemunsch, M. Ferrara, N. Graber, S. G. Hartke, S. Ja-458

hanbekam, B. Lidicky, L. Nelsen, D. Stolee and E. Sullivan, On the strong459

chromatic index of sparse graphs,460

arXiv: 1508.03515.461
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