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Abstract

A k-circular-distance-two labeling (or k-c-labeling) of a simple graph G is a
vertex-labeling, using the labels 0, 1, 2, · · · , k − 1, such that the “circular differ-
ence” (mod k) of the labels for adjacent vertices is at least two, and for vertices
of distance-two apart is at least one. The σ-number, σ(G), of a graph G is the
minimum k of a k-c-labeling of G. For any given positive integers n and k, let
Gσ(n, k) denote the set of graphs G on n vertices and σ(G) = k. We deter-
mine the maximum size (number of edges) and the minimum size of a graph
G ∈ Gσ(n, k). Furthermore, we prove that for any value p between the maxi-
mum and the minimum size, there exists a graph G ∈ Gσ(n, k) of size p. These
results are analogues of the ones by Georges and Mauro [4] on distance-two
labelings.

Keywords. Vertex-labeling, circular difference, circular-distance-two labeling, distance-

two labeling.

1 Introduction

Originated from the channel assignment problem introduced by Hale [7], distance-

two labeling was first introduced and studied by Griggs and Yeh [6]. Given a graph
∗Research partially supported by the National Science Foundation under grant DMS-9805945.
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G, the distance between two vertices u and v, denoted as dG(u, v), is the length

(number of edges) of a shortest path between u and v. An L(2, 1)-labeling of G is a

function, f : V (G) → {0, 1, 2, · · ·}, such that |f(u) − f(v)| ≥ 2 if dG(u, v) = 1, and

|f(u)−f(v)| ≥ 1 if dG(u, v) = 2. The span of an L(2, 1)-labeling f is the difference of

the maximum and minimum labels used by f . The λ-number of G, λ(G), is defined

as the minimum span among all L(2, 1)-labelings of G.

We consider a variation of the L(2, 1)-labeling by using a different measurement.

For a positive integer k, a k-circular-labeling (or k-c-labeling for short) of a graph G

is a function, f : V (G) → {0, 1, 2, · · · , k − 1}, such that:

|f(u) − f(v)|k ≥

{

2, if dG(u, v) = 1;
1, if dG(u, v) = 2.

(∗)

where |x|k := min{|x|, k − |x|} is the circular difference modulo k. The σ-number of

G, σ(G), is the minimum k of a k-c-labeling of G.

The notion of using circular difference in the channel assignment problem was

first introduced by ven den Heuvel, Leese and Shepherd [8]. For given positive integers

d and b1 ≥ b2 ≥ b3 ≥ · · · ≥ bd, a k-circular-distance-d labeling is a function f

which assigns to each vertex in G a label from the set {0, 1, 2, · · · , k − 1} such that

|f(u)−f(v)|k ≥ bi if dG(u, v) = i. In [8], the authors determined the minimum value k

of a k-circular-distance-3 labeling for infinite triangular lattices and for infinite square

lattices.

We denote the size (number of edges) and order (number of vertices) of a graph

G by ε(G) and ν(G), respectively. Fix positive integers n and k, let Gσ(n, k) denote

the set of graphs G on n vertices and σ(G) = k. Let mσ(n, k) and Mσ(n, k) denote,

respectively, the minimum size and the maximum size of a graph G ∈ Gσ(n, k). Note

that the σ-number of a graph on n vertices is at most 2n and can never be 2 or 3.

Thus throughout the article, we assume k = 1 or 4 ≤ k ≤ 2n. The main results of

this article are:
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Theorem 1.1 Let n and k be positive integers, k ≤ 2n. Then

mσ(n, k) =











































0, if k = 1;
k − 3, if 4 ≤ k ≤ n + 2;
(k−3n)(n−k+1)

2
, if k is even and n + 2 < k ≤ 6n+6

5
;

k(k−2)
8

, if k is even, k > n + 2 and k > 6n+6
5

;
(k−3n)(n−k+1)

2
, if k is odd and n + 2 < k ≤ 6n+9

5
;

(k+3)(k−3)
8

, if k is odd, k > n + 2 and k > 6n+9
5

.

Theorem 1.2 Let n and k be positive integers with n = qk + r for some integers q

and 0 ≤ r < k. Then

Mσ(n, k) =



























0, if k = 1;
(

n

2

)

− 2n + k, if n + 1 ≤ k ≤ 2n;

q
((

k

2

)

− k
)

+
(

r

2

)

, if 2r ≤ k and 4 ≤ k ≤ n;

q
((

k

2

)

− k
)

+
(

r

2

)

− 2r + k, if 2r > k and 4 ≤ k ≤ n.

Denote the minimum size and the maximum size of a graph with order n and

λ-number k by m(n, k) and M(n, k), respectively. Georges and Mauro [4] obtained

the formulas of m(n, k) and M(n, k) in terms of n and k. To prove Theorems 1.1 and

1.2, we make use of these Georges-Mauro formulas and results in [9] on connections

between the σ-number and the λ-number.

In addition, for any given n and k, we characterize the graphs of minimum sizes

in Gσ(n, k), and prove that for any integer p where mσ(n, k) ≤ p ≤ Mσ(n, k), there

exists a graph G ∈ Gσ(n, k) of size p.

2 Preliminaries and notation

The path covering number of a graph G, pv(G), is the minimum number of vertex dis-

joint paths covering V (G). The complement of a graph G is denoted by Gc. Georges,

Mauro and Whittlesey [5] proved an interesting result relating the path covering

number of Gc and the λ-number for any graph G.

Theorem 2.1 [5] Let G be a graph on n vertices. Then

λ(G)

{

≤ n − 1, if Gc has a Hamilton path;
= n + pv(G

c) − 2, otherwise.
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The path covering number of Gc and the σ-number of G are also closely related.

The following result was given in [9].

Theorem 2.2 [9] Given a graph G on n vertices, then

σ(G)

{

≤ n, if Gc is Hamiltonian;
= n + pv(G

c), if Gc is not Hamiltonian.

Combining Theorems 2.1 and 2.2, we have the following corollaries.

Corollary 2.3 If G is a graph on n vertices and σ(G) ≥ n+2, then σ(G) = λ(G)+2.

Corollary 2.4 If n and k are positive integers with n+2 ≤ k ≤ 2n, then mσ(n, k) =

m(n, k − 2) and Mσ(n, k) = M(n, k − 2).

Note that in general, by definition, for any graph G, σ(G) is either λ(G) + 1 or

λ(G)+2 , and each case is realizable (cf. [9]). However, the problem of characterizing

graphs into these two cases remains open.

Now we introduce several notation and definitions that will be used in later

sections. For any positive integers n and k with k ≤ 2n, let Gσ
m(n, k) and Gσ

M(n, k)

denote, respectively, the set of graphs with the smallest and the largest sizes in

Gσ(n, k). That is, for any G ∈ Gσ(n, k) we have mσ(n, k) = ε(G) iff G ∈ Gσ
m(n, k),

and Mσ(n, k) = ε(G) iff G ∈ Gσ
M(n, k).

Let L be a k-c-labeling of a graph G. Define:






























Li := {v | L(v) = i} and li := |Li|, 0 ≤ i ≤ k − 1;

H(L) := {i | Li = ∅};

G(L) := {i | Li = ∅ and li−1 = li+1 = 1}.

All the indices above are taken under modulo k. If i ∈ H(L) or G(L), then i is called

a hole or a gap of L, respectively.

A k-c-labeling L of a graph G is optimal if k = σ(G). In this case, L is called

a σ-labeling. An optimal L(2, 1)-labeling is called a λ-labeling. A σ-labeling of G is

min-hole if it has the least holes among all σ-labelings of G.
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3 Proof of Theorem 1.1

We prove Theorem 1.1 by using Corollary 2.4 and the following result of Georges and

Mauro [4]:

Theorem 3.1 [4]

m(n, k) =











































0, if k = 0;
k − 1, if 2 ≤ k ≤ n;
(k−3n+2)(n−k−1)

2
, if k is even and n < k ≤ 6n−4

5
;

k(k+2)
8

, if k is even, n < k and k > 6n−4
5

;
(k−3n+2)(n−k−1)

2
, if k is odd and n < k ≤ 6n−1

5
;

(k−1)(k+5)
8

, if k is odd, n < k and k > 6n−1
5

.

(Proof of Theorem 1.1) The case as k = 1 is trivial.

By Corollary 2.4, it remains to show the case that 4 ≤ k ≤ n + 1. Hence, it

suffices to prove mσ(n, k) = k − 3 for all 4 ≤ k ≤ n + 1.

Let G = K1,k−3 ∪ (n − k + 2)K1, then σ(G) = k, so mσ(n, k) ≤ k − 3. Suppose

mσ(n, k) ≤ k− 4. Let n0 be the smallest n such that n ≥ k− 1 and mσ(n, k) ≤ k− 4.

Let G be a graph in Gσ
m(n0, k). Then ε(G) ≤ k − 4 and ν(G) = n0 ≥ k − 1 ≥ 3,

so G is not connected. Because G ∈ Gσ
m(n0, k), we have G = G1 ∪ xK1, for some

x ≥ 2 and G1 a connected graph with σ(G1) = k. Let G′ = G1 ∪ (x − 1)K1, then

ν(G′) = n0 − 1, ε(G′) = ε(G1) = ε(G) ≤ k − 4 and σ(G′) = σ(G1) = k. By the

minimality of n0, one has n0 = k − 1, which is impossible. For if n0 = k − 1, then

mσ(k − 2, k) ≤ ε(G′) ≤ k − 4, contradicting the fact, by Corollary 2.4 and Theorem

3.1, that mσ(n, n + 2) = m(n, n) = n − 1. Q.E.D.

Corollary 3.2 If 4 ≤ k ≤ 2n, then mσ(n, k) = m(n, k − 2) for all n.

4 Proof of Theorem 1.2

The following result was proved by Georges and Mauro [4].
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Theorem 4.1 [4] Let n = q(k + 1) + r, q ∈ Z+ ∪ {0}, 0 ≤ r ≤ k. Then

M(n, k) =



































0, if k = 0;
bn

2
c, if k = 2 and n ≥ 2;

(

n

2

)

− 2n + k + 2, if n − 1 ≤ k ≤ 2n − 2, k ≥ 3;

q
((

k+1
2

)

− k
)

+
(

r

2

)

, if 2r − 2 ≤ k and 3 ≤ k ≤ n − 1;

q
((

k+1
2

)

− k
)

+
(

r

2

)

− 2r + k + 2, if k < 2r − 2 and 3 ≤ k ≤ n − 1.

Lemma 4.2 If n + 1 ≤ k ≤ 2n, then Mσ(n, k) = M(n, k − 2).

Proof. By Corollary 2.4, we only have to show the case for k = n + 1. That is, to

prove Mσ(n, n + 1) =
(

n

2

)

− n + 1.

Let G ∈ Gσ
M(n, n + 1). Then Theorem 2.2 implies that pv(G

c) = 1. Thus,

ε(Gc) ≥ n−1, so Mσ(n, k) = ε(G) ≤
(

n

2

)

−n+1. To see Mσ(n, k) ≥
(

n

2

)

−n+1, let G

be the complement of Pn (path on n vertices) and appeal to Theorem 2.2. Q.E.D.

By Theorem 4.1 and Lemma 4.2, the second case in Theorem 1.2 can be obtained

directly. The remaining proof of Theorem 1.2 will rely on the following lemmas.

Lemma 4.3 Let n and k be integers such that n = qk + r for some q ∈ Z+ and

0 ≤ r < k. Then

Mσ(n, k) ≥







q
((

k

2

)

− k
)

+
(

r

2

)

, if 2r ≤ k and 4 ≤ k ≤ n;

q
((

k

2

)

− k
)

+
(

r

2

)

− 2r + k, if 2r > k and 4 ≤ k ≤ n.

Proof. It is enough to find graphs G ∈ Gσ(n, k) such that ε(G) are as desired. Fix

n and k where n = qk + r for some q ∈ Z+ and 0 ≤ r < k. Define G∗ = G∗(n, k) by:

V (G∗) = V0 ∪ V1 · · · ∪ Vk−1 ∪ U0 ∪ U1 · · · ∪ Uk−1,

where Vi = {vi,1, vi,2, · · · , vi,q} for 0 ≤ i ≤ k − 1, and each Ui is defined by the

following: (All indices are taken under modular k.)

(1) If r = 0, then Ui = ∅ for all i.

(2) If r ≥ 1 and 2r ≤ k, then U2i = {u2i} for i = 0, 1, 2, · · · , r − 1, and Ui = ∅ for

others.
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(3) If 2r > k, then U2i = {u2i} for 0 ≤ i ≤ bk
2
c − 1, U2i−1 = {u2i−1} for 0 ≤ i ≤

r − bk
2
c − 1, and Ui = ∅ for others.

And the edge set of G∗ has:

E(G∗) = {vj,xvw,x : |j − w|k ≥ 2, 1 ≤ x ≤ q} ∪ {ujuw : |j − w|k ≥ 2}.

Indeed, G∗ ∼= qCc
k ∪B, where Cc

k is the complement of the k-cycle, and V (B) =

∪0≤i≤k−1Ui. Define a labeling L∗ on G∗ by L∗(vi,x) = L∗(ui) = i, for all 0 ≤ i ≤ k − 1

and 1 ≤ x ≤ q. It is easy to check that L∗ is a k-c-labeling for G∗. So σ(G∗) ≤ k.

On the other hand, it can be verified that σ(Cc
k) = k. Therefore σ(G∗) = k, implying

Mσ(n, k) ≥ ε(G∗). The result so follows by simple calculations of ε(G∗). Q.E.D.

Lemma 4.4 Suppose G ∈ Gσ
M(n, k), and L is a σ-labeling for G. Then for all |i −

j|k ≥ 2, the subgraph induced by Li ∪ Lj is a matching with min{li, lj} edges.

Proof. Let L be a σ-labeling for some G ∈ Gσ
M(n, k), then each vertex in Li is adjacent

to at most one vertex in Lj, for any j, |i−j|k ≥ 2. Without loss of generality, suppose

1 ≤ li ≤ lj for some i, j, |i − j|k ≥ 2. It suffices to show that any vertex in Li is

adjacent to at least one vertex in Lj. Suppose to the contrary, there exists v ∈ Li

such that v is not adjacent to Lj. Then since li ≤ lj, there exists u ∈ Lj such that

u is not adjacent to Li. Let G′ = G ∪ {uv}. Then ν(G′) = n, ε(G′) = ε(G) + 1,

and L is a k-c-labeling for G′. Thus σ(G′) = k, contradicting the assumption that

G ∈ Gσ
M(n, k). Q.E.D.

The next lemma is trivial.

Lemma 4.5 If L is a σ-labeling for a graph G, then L has no consecutive holes.

It was proved in [9] that if L is a min-hole σ-labeling for a graph G and h ∈ H(L),

then lh−1 = lh+1 > 0; moreover, G(L) = ∅ if and only if σ(G) ≤ ν(G). These lead to

the next lemma:
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Lemma 4.6 Suppose G ∈ Gσ
M(n, k), k ≤ n, and L is a min-hole k-c-labeling for G.

If h ∈ H(L), then lh−1 = lh+1 ≥ 2.

Lemma 4.7 If n ≥ k, then there exists a graph G ∈ Gσ
M(n, k) such that |H(L)| < k/2

for some min-hole σ-labeling L of G.

Proof. By Lemma 4.5, |H(L)| ≤ k/2. Hence, we only have to consider the case that

k is even and k ≥ 4. Suppose there exists G ∈ Gσ
M(n, k) such that |H(L)| = k/2, where

L a min-hole σ-labeling of G. By Lemma 4.3, it suffices to show that ε(G) ≤ ε(G∗).

For then G∗ ∈ Gσ
M(n, k), so the result follows by taking G∗ and L∗, where L∗ is the

same as defined in Lemma 4.3 (note that |H(L∗)| = 0).

Following Lemma 4.3, set n = qk+r. By Lemma 4.6, without loss of generality,

we may assume that l0 = l2 = l4 · · · = lk−2 = b, so n = bk/2 = qk + r. Hence

(b− 2q)k = 2r. Because r ≤ k − 1, it follows that b− 2q = 0 or 1. If b− 2q = 0, then

r = 0. Hence ε(G) = qk(k − 2)/4 ≤ qk(k − 3)/2 = ε(G∗) (since k ≥ 4).

If b − 2q = 1, then k = 2r. By Lemma 4.4, we get ε(G) = qk(r−1)
2

+
(

r

2

)

≤

qk(k−3)
2

+
(

r

2

)

= ε(G∗) (since r ≥ 2). Q.E.D.

Lemma 4.8 If n ≥ k, then Mσ(n, k) < Mσ(n, k + 1).

Proof. By Lemma 4.7, there exist a graph G ∈ Gσ
M(n, k) and a σ-labeling L of G

such that |H(L)| < k/2. That is, there exist u, v ∈ V (G), uv /∈ E(G), such that

L(u) = i and L(v) = i + 1 (mod k) for some i. Let G′ be the graph such that

V (G′) = V (G) and E(G′) = E(G)∪{uv}. Because G ∈ Gσ
M(n, k), one has σ(G′) > k.

Define a labeling L′ on G′ by L′(x) = L(x) if L(x) ≤ i; L′(x) = L(x) + 1 (mod k + 1)

if L(x) ≥ i + 1. Then L′ is a (k + 1)-c-labeling for G′, so σ(G′) ≤ k + 1. It then

follows that σ(G′) = k + 1, so Mσ(n, k + 1) ≥ ε(G′) > Mσ(n, k). Q.E.D.

Lemma 4.9 If n ≥ k, then there exists a graph G ∈ Gσ
M(n, k) such that G has an

onto σ-labeling.
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Proof. Let L be a σ-labeling of a graph G ∈ Gσ
M(n, k) such that L has the least

holes among all σ-labelings of graphs in Gσ
M(n, k). By Lemma 4.7, |H(L)| < k/2. It

suffices to show that L is onto. Suppose not, then there exists h ∈ H(L) such that

lh+2 > 0 or lh−2 > 0. Without loss of generality, suppose lh+2 > 0. Let u ∈ Lh+2.

By Lemma 4.6, lh+1 = lh−1 ≥ 2. Let x, x′ ∈ Lh−1 and y, y′ ∈ Lh+1. By Lemma

4.4, without loss of generality, assume xy, x′y′ ∈ E(G) and ux′ /∈ E(G) (since at

most one of x and x′ is adjacent to u). Let G′ be the graph with V (G′) = V (G) and

E(G′) = E(G) ∪ {x′u} − {x′y′}. Define a mapping L′ on V (G′) by L′(w) = L(w) if

w 6= x′; L′(x′) = h. Then L′ is a k-c-labeling for G′. Since ε(G′) = ε(G), by Lemma

4.8, σ(G′) = k. Hence G′ ∈ Gσ
M(n, k). This contradicts the minimality of L, since L′

has fewer holes than L. Therefore L is onto. Q.E.D.

Lemma 4.10 If n ≥ k, then there exists G ∈ Gσ
M(n, k), such that G = A ∪ B, where

A ∼= Cc
k.

Proof. By Lemma 4.9, there exist a graph G ∈ Gσ
M(n, k) and a k-c-labeling L for G

such that H(L) = ∅. So by Lemma 4.4, we can find a k-cycle A in G,

A =

{

v0, v2, v4, · · ·vk−2, v1, vk−1, v3, v5, · · · , vk−3, v0, if k is even;
v0, v2, v4, · · ·vk−1, v1, v3, · · · , vk−2, v0, if k is odd,

where vi ∈ Li for each i. Note that if n = k then it is trivial that such a cycle exists.

If n > k, then by Lemma 4.8, one can show (by replacing some edges if necessary)

that there exists some graph G ∈ Gσ
m(n, k) so that G contains such a cycle.

Now, it is enough to show that there exists G′ ∈ Gσ
M(n, k) such that G′ = A∪B

(where A is the same as defined in the above) and A ∼= Cc
k. For the latter part, it

suffices to prove vivj ∈ E(G′) for all |i − j|k ≥ 2.

Suppose vivj /∈ E(G) for some |i− j|k ≥ 2. Then by Lemma 4.4, at least one of

the following two occurs:

(a) vjx ∈ E(G) for some x ∈ Li,
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(b) viy ∈ E(G) for some y ∈ Lj.

Let G′ be the graph such that V (G′) = V (G). If (a) occurs only (the case for (b)

occurs only is similar), let E(G′) = E(G)∪ {vivj}− {vjx}; if both (a) and (b) occur,

let E(G′) = E(G) ∪ {vivj, xy} − {vjx, viy}. In any of these two cases, applying the

same labeling L on G′ guarantees that σ(G′) ≤ k. Hence, by Lemma 4.8, σ(G′) = k.

This implies G′ ∈ Gσ
M(n, k). Continuing this process, eventually, we obtain a graph

G′ ∈ Gσ
M(n, k) such that G′ = A ∪ B and A ∼= Cc

k. Q.E.D.

(Proof of Theorem 1.2) By Lemmas 4.2 and 4.3, it suffices to show that Mσ(n, k) ≤

ε(G∗), if n ≥ k. We prove this by induction on q.

Initial step: Let q = 1, then n = k + r, 0 ≤ r < k. By Lemma 4.10, there exists

G ∈ Gσ
M(n, k) such that G = A ∪ B, A ∼= Cc

k and ν(B) = r. This implies that

Mσ(n, k) = ε(A) + ε(B)
= k(k − 3)/2 + ε(B)
≤ k(k − 3)/2 + Mσ(r, k) (by Lemma 4.8)

≤







k(k − 3)/2 +
(

r

2

)

− 2r + k, if k ≤ 2r (by Lemma 4.2, Theorem 4.1)

k(k − 3)/2 +
(

r

2

)

, if k > 2r (by definition)

= ε(G∗) (by Lemma 4.3)

Inductive step: Suppose n = qk + r, q ≥ 2, 0 ≤ r < k. By Lemma 4.10, there exists

G ∈ Gσ
M(n, k) such that G = A ∪ B, A ∼= Cc

k and ν(B) = (q − 1)k + r. According

to the inductive hypothesis, ε(B) ≤ ε(G∗(n − k, k)). Hence Mσ(n, k) = ε(G) =

k(k − 3)/2 + ε(B) ≤ ε(G∗(n, k)). The proof is complete. Q.E.D.

5 All sizes are attainable

Fixing n and k, Georges and Mauro [4] characterized the graphs of minimum sizes on n

vertices and λ(G) = k. Combining their results with Corollary 3.2, characterizations

of graphs in Gσ
m(n, k) can be obtained.

Let G ∈ Gσ(n, k), where k ≥ n + 3. By Theorem 2.2, pv(G
c) = k − n. Let

c = k − n. Define H1 and H2 by: H1 = ((c − 1)K1 ∪ Kn−c+1)
c and H2 = (jK1 ∪

Kn+c−1−2j)
c ∪ (j − c + 1)K1, where j = bn+c−2

2
c.
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Corollary 5.1 Let H1 and H2 be defined as in the above. Then

(1) for 4 ≤ k ≤ n + 2,

Gσ
m(n, k) =











{K1,k−3 ∪ (n − k + 2)K1}, if k 6= 6;

{K1,3 ∪ (n − 4)K1, K
c
1,3 ∪ (n − 4)K1}, if k = 6.

(2) for n + 3 ≤ k ≤ 2n,

Gσ
m(n, k) =































{H1}, if k is even and k < 6n+6
5

, or k is odd and k < 6n+9
5

;

{H1, H2}, if k = 6n+6
5

or k = 6n+9
5

;

{H2}, otherwise.

Proof. The results for n ≤ k−2 follow directly from Theorem 3.6 in [4] and Corollary

3.2.

Suppose n ≥ k−1. Let G ∈ Gσ
m(n, k). By Theorem 1.1, ε(G) = k−3 ≤ ν(G)−2.

So G is not connected. Because G ∈ Gσ
m(n, k), we have G = G1 ∪ xK1 for some

x ≥ 1 and some connected graph G1 such that ε(G1) = k − 3, σ(G′) = k, and

G1 ∈ Gσ
m(n − x, k). Hence ε(G1) ≥ ν(G1) − 1, so ν(G1) ≤ k − 2. Thus the results

hold for G1, and so hold for G. This completes the proof. Q.E.D.

Georges and Mauro [4] proved that all sizes between m(n, k) and M(n, k) are

attained by some graphs with order n and λ-number k. Analogous results also hold

for circular-distance-two labelings.

Theorem 5.2 Given n and k, 4 ≤ k ≤ 2n, then for any x where mσ(n, k) ≤ x ≤

Mσ(n, k), there exists a graph G ∈ Gσ(n, k) such that ε(G) = x.

Proof. For any n and k, 4 ≤ k ≤ 2n, it is enough to find graphs G ∈ Gσ
m(n, k) and

G′ ∈ Gσ
M(n, k) such that G is a subgraph of G′. We consider two cases:

Case 1 4 ≤ k ≤ n: By the proof of Theorem 1.2, it suffices to find G ∈ Gσ
m(n, k)

such that G ⊆ G∗ (G∗ is defined in Lemma 4.3). Let n = qk + r, 0 ≤ r < k. Define

11



a subgraph Gm of G∗ by: V (Gm) = V (G∗) and E(Gm) = {(v0,1vi,1) : 2 ≤ i ≤ k − 2}.

Then Gm
∼= K1,k−3 ∪ (n − k + 2)K1; by Corollary 5.1, Gm ∈ Gσ

m(n, k).

Case 2 k ≥ n+1: By Theorem 2.2, for any G ∈ Gσ
m(n, k), pv(G

c) = k−n ≥ 1.

By Theorem 1.2, Mσ(n, k) =
(

n

2

)

− 2n+k, so Gσ
M(n, k) contains all the graphs G such

that ν(G) = n, and G is the complement of (k − n) disjoint paths. It then follows

that for any G ∈ Gσ
m(n, k), G ⊆ G′ for some G′ ⊆ Gσ

M(n, k). Q.E.D.
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