Key for test 2 guideline sample questions:

1) answer: #g Na$_2$CO$_3$ needed=
\[0.250 L \times 0.14 \text{ mol Na/L} \times (1 \text{ mol Na}_2 \text{CO}_3 / 2 \text{ mol Na}) \times (106 \text{ g/mol}) = 1.86 \text{g} \]

2) a) sodium sulfate & barium chloride. React? yes (yes/no) product(s): BaSO$_4$ ppt & NaCl(aq)

BaCl$_2$(aq) + Na$_2$SO$_4$(aq) --> BaSO$_4$(s) + 2 NaCl; net: Ba$^{2+}$ + SO$_4^{2-}$ --> BaSO$_4$(s)

b) silver chloride & potassium nitrate. React? yes (yes/no) If so, product(s): None since AgCl is insoluble and will not be able to go into solution.

c) Lead acetate & ammonium iodide. React? yes (yes/no) If so, product(s): PbI$_2$, Pb(CH$_3$CO$_2$)$_2$(aq) + 2NH$_4$I(aq) --> PbI$_2$(s) + 2 NH$_4$CH$_3$CO$_2$(aq).

Net ionic: Pb$^{2+}$ + 2I$^-$ --> PbI$_2$

d) sulfuric acid + sodium hydrogen carbonate? yes (yes/no) If so, product(s):

\[\text{H}_2\text{SO}_4(aq) + 2 \text{NaHCO}_3(aq) \rightarrow \text{Na}_2\text{SO}_4(aq) + 2 \text{CO}_2(g) + 2 \text{H}_2\text{O}(l) \]

3) a) H$_3$PO$_4$ + 3 NaHCO$_3$ --> Na$_3$PO$_4$ + 3 H$_2$CO$_3$

b) (NH$_4$)$_2$SO$_4$ + Ba(NO$_3$)$_2$ --> BaSO$_4$ + 2NH$_4$NO$_3$

\[\text{MnO}_4^- + 5e^- \rightarrow \text{Mn}^{2+} + 4\text{H}_2\text{O} \]

OK, now although the O’s are balanced, a new problem arises, we have added 8 H’s on the right side. To balance those, we add 8 H’s on the left side:

\[8\text{H}^+ + \text{MnO}_4^- + 5e^- \rightarrow \text{Mn}^{2+} + 4\text{H}_2\text{O} \quad \text{ (finally this half reaction is balanced!)} \]

finally, check to see if the charges are balanced. Yes they are! Both sides have a net +2 charge.

Now, we have to add the 2 half reactions. But not before making sure that the electrons will cancel out. There must absolutely be no net e’s in the final balanced equation. By inspection we note that this will only happen if we first multiply the first (oxidation) equation by 5 and the second (reduction) equation by 2, prior to adding both up.

Final balanced REDOX equation:

\[5\text{C}_2\text{O}_4^{2-} + 16\text{H}^+ + 2 \text{MnO}_4^- \rightarrow 10\text{CO}_2 + 2\text{Mn}^{2+} + 8\text{H}_2\text{O} \quad \text{(Balanced by charge and by mass! Count the charges and the atoms)} \]

4) a) It is a good habit to start by inspecting the reaction by writing the balanced equation: 2 NaOH + H$_2$SO$_4$ --> 2H$_2$O + Na$_2$SO$_4$;

This is a titration problem. If the coefficients were both 1, it would be a simple matter of using $M_1V_1 = M_2V_2$. But it is not so simple, so we can just treat it as a standard stoichiometry problem. At the equivalence point, we have:

\[[\text{NaOH}] = \text{moles of NaOH/L NaOH} = \text{moles H}_2\text{SO}_4 \times (2 \text{ mol NaOH/mol H}_2\text{SO}_4) / L \text{ NaOH} \]
but moles $\text{H}_2\text{SO}_4 = [\text{H}_2\text{SO}_4] \times (L \text{ H}_2\text{SO}_4) = (0.25\text{mol/L})(0.0150\text{L})$. so, we can write the full solution below:

$$0.15(0.25) \text{ mol} \text{ H}_2\text{SO}_4 (2\text{mol NaOH }/\text{mol H}_2\text{SO}_4)/0.025\text{L} = 0.300 \text{M NaOH}.$$

(sometimes people get confused about what this means. It means that initially, before we even started any titration, the concentration of the NaOH was 0.300M. Titrations are of course done to determine the otherwise unknown concentration of a base or acid solution).

Here is an alternative approach: (this how we reason it out in Chem 201)

At equivalence:
equiv $\text{H}_2\text{SO}_4 = $ # equiv NaOH

$$2 \times \# \text{moles} \text{H}_2\text{SO}_4 = \# \text{moles} \text{NaOH}$$

But moles = MV, so, we can write:

$$2 \times M_{\text{H}_2\text{SO}_4}V_{\text{H}_2\text{SO}_4} = M_{\text{NaOH}}V_{\text{NaOH}} \Rightarrow 2M_1V_1 = M_2V_e \text{ where } V_e = \text{vol}$$

at equiv

$$M_2 = 2M_1V_1/V_e = 2(15\text{mL})(.250\text{M})/(25 \text{ mL})= 0.300\text{M} \text{ (note that the volume is kept as “mLs” because the units cancel out in the end anyway.)}$$

b) In this question, we have NOT YET REACHED EQUIVALENCE. So, we first calculate how many NaOH’s have reacted based on the H_2SO_4 as the limiting reagent. Then, we calculate how much NaOH has remained unreacted by just subtracting it off from the original NaOH. For this problem, it is safest to think in terms of MOLES. Note that this problem is asking what the concentration of NaOH is during the titration. Thus, we need to take into account the actual total volume of the solution after adding H_2SO_4 to it.

Moles NaOH reacted = moles H_2SO_4 added x (2 mol NaOH/1mol H_2SO_4 added) = (.250 mol H_2SO_4/L)(.0100L)(2)

the abbreviated solution looks like this:

$$[\text{NaOH}] = \frac{\text{mol NaOH left over/L total soln} = \text{mol NaOH}_i - \text{mol NaOH}_\text{reacted}}{(\text{vol NaOH}_i + \text{vol H}_2\text{SO}_4 \text{ added})} = (M_1V_1 - 2M_2V_2)/(V_1 + V_2) = (.300(25) - 2(.25)(10))/(25+10)=.0714 \text{M NaOH}$$

5) (a) Note that the number of moles of H_2SO_4 is determined by using conversion factors. That is then divided by the total final volume (in liters).
\[\text{[H}_2\text{SO}_4] = \frac{\text{mol H}_2\text{SO}_4}{\text{L}} = \frac{25.0 \text{g}}{1.48 \text{g}} \left(\frac{18 \text{mol H}_2\text{SO}_4}{1000 \text{mL}} \right) \left(\frac{1 \text{mL}}{0.500 \text{L}} \right) = 0.608 \text{ M} \]

b) The titration equation is: \(2 \text{ NaOH} + \text{H}_2\text{SO}_4 \rightarrow 2 \text{ H}_2\text{O} + \text{Na}_2\text{SO}_4\)

Since \# mol H\(^+\) donated = \# mol accepted at equiv. pt:

\#mol H\(_2\text{SO}_4\) x 2 = \# mol NaOH \Rightarrow 2 M_1 V_1 = M_2 V_2 \) (where “1”=H\(_2\text{SO}_4\), etc)

We have the following information: \(M_1 = 0.608 \text{ M}, V_1 = 50.0 \text{ mL}.\) We want to determine \(V_2\) but we also need to find out \(M_2\) first.

5% (by mass) means 5 grams of solute/100 g solution. First you need to determine the molarity of the NaOH solution:

\[\text{[NaOH]} = \frac{5.0 \text{ g NaOH}}{100. \text{ g soln}} \left(\frac{1 \text{ mol NaOH}}{40.0 \text{ g M NaOH}} \right) \left(\frac{1.1 \text{ g soln}}{1000 \text{ mL}} \right) = 1.38 \text{ M NaOH} \]

so, \(V_2 = \frac{2M_1 V_1}{M_2} = \frac{2(0.608 \text{ M})(50.0 \text{ mL})}{(1.38 \text{ M})} = 44.1 \text{ mLs} \)

or, if you wish to do it using the conversion factor method:

\#mL NaOH = (50.0 mL H\(_2\text{SO}_4\))(1L/1000mL)(0.608 mol H\(_2\text{SO}_4\)/L H\(_2\text{SO}_4\))

\((2 \text{ mol NaOH/mol H}_2\text{SO}_4)(1 \text{ L NaOH} /1.38 \text{ mol NaOH})(1000 \text{ mL/L}) = 44.1 \text{ mL} \)

6) a) To get limiting reactant, you can do 2 approaches.

*The “brute force” approach is just to solve for the amount of product you expect based on each one of the reactant amounts given. The reactant that gives the least amount of product is the limiting reactant.

*The other method is to assume one of the reactants is the limiting reactant and then calculate how much of the “other” reactant you will need for this limiting reactant to be completely used up. If your calculation shows that you in fact have more reactant at hand than you need, then your first assumption is correct. Otherwise, it is not and you will need to choose the other reactant as your limiting reactant,

Let’s try the second approach: Assume that H\(_2\) is limiting:

Solve for mol N\(_2\) needed to react with the 12.0 mol H\(_2\):
#mol N₂ needed = 12.0 mol H₂ x (1 mol N₂/3 mol H₂) = 4.0 mol N₂. Since that is less than the 6.0 mol available, N₂ must be in excess by 2.0 mols. H₂ is limiting reactant. #g N₂ excess = 2.0 mol(28.0g/mol) = 56.0 g N₂.

b) Theoretical yield of NH₃ = (12.0 mol H₂)(2 mol NH₃/3 mol H₂) = 8.0 mol NH₃ (17.0 g/mol) = 136 g NH₃
c) Recall that % yield = (actual yield/theoretical yield) x 100%
=> actual yield = (%yield/100%)(theoretical yield)
So, # mol NH₃ = (0.80)(8.0 mol) = 6.4 mol.
d) # g NH₃ = 6.4 mol x (17.0 g/mol) = 110 g NH₃
e) # molecules NH₃ = 6.4 mol NH₃ x (6.02 x 10²³ molec/mol) = 3.85 x 10²⁴ molecules

f) V NH₃ = 110 g (1 L/0.76 g) = 140 L

7) Write balanced equation for this reaction:
 Cu(s) + 4HNO₃ → Cu(NO₃)₂ + 2NO₂ (g) + 2H₂O

This is a conversion factor problem:
 #L NO₂ = (0.15 cm³ Cu)(8.95 g Cu/cm³ Cu)(1 mol Cu/63.5 g Cu)(2 mol NO₂/mol Cu) (1 L NO₂/2.05 g NO₂)(0.70) = 0.014 L

8) recall MV = moles; so MV of H₂C₂O₄ gives moles H₂C₂O₄. From there convert to moles KOH then concentration. But you need balanced eqn: [KOH]=?

 H₂C₂O₄ + 2KOH → K₂C₂O₄ + 2H₂O:

 [H₂C₂O₄] = 0.0200 L KOH (0.400 mol KOH/L KOH)(1 mol H₂C₂O₄/mol KOH)/0.020 L
 H₂C₂O₄ = 0.25 M H₂C₂O₄

 Alternatively, M₁V₁ = 2 M₂V₂ (which is “1”? “1” is KOH in this equation. If you can’t clearly determine which is which, don’t use this alternative approach. You will have only a 50% chance of succeeding).

 M₂ = M₁V₁/(2V₂) = (0.400 M)(20.0 mL)/(2(16.0 mL)) = 0.25 M H₂C₂O₄