Experiment: Determination of Manganese in Steel

Manganese (Mn) in steel may be determined upon dissolution as manganese (VII) after oxidation from the manganese oxidation state (II). This procedure calls for three oxidizing agents. Manganese (VII) may be determined spectrophotometrically.

During dissolution of the sample with dilute nitric acid to form iron (II) and manganese (II), nitrogen oxide gases are formed. These must be removed, partially by boiling, and the rest with ammonium peroxydisulfate (\((\text{NH}_4)_2\text{S}_2\text{O}_8\), also known as ammonium persulfate) which also removes carbon or other organic matter present. The nitrogen oxides may react with periodic acid which is used to convert manganese to the (VII) oxidation state. Excess peroxydisulfate is decomposed by boiling.

The equations are:

\[
3 \text{ Mn} + 2 \text{NO}_3^- + 8\text{H}^+ \rightarrow 3 \text{Mn}^{2+} + 2 \text{NO} (\text{g}) + 4\text{H}_2\text{O}
\]

\[
2 \text{NO}_2 (\text{g}) + \text{S}_2\text{O}_8^{2-} + 2 \text{H}_2\text{O} \rightarrow 2 \text{NO}_3^- + 2 \text{SO}_4^{2-} + 4 \text{H}^+
\]

\[
2 \text{S}_2\text{O}_8^{2-} + 2 \text{H}_2\text{O} + \text{heat} \rightarrow 4 \text{SO}_4^{2-} + \text{O}_2 + 4 \text{H}^+
\]

\[
2 \text{Mn}^{2+} + 5 \text{IO}_4^- + 3 \text{H}_2\text{O} \rightarrow 2 \text{MnO}_4^- + 6 \text{H}^+ + 5 \text{IO}_3^-
\]

\[
\text{NO} (\text{colorless gas}) + \frac{1}{2} \text{O}_2 (\text{g}) \leftrightarrow \text{NO}_2 (\text{brown gas})
\]

Note: Peroxydisulfate has the required oxidizing potential to change the oxidation state of manganese from (II) to (IV), but the reaction is too slow. Silver could be employed catalytically but the results are too erratic. Periodate (\(\text{IO}_4^-\)) oxidizes the manganese to the (VII) state quantitatively and rapidly at the boiling point, and it is advisable to add the sparingly soluble periodate salt in several portions to maintain an excess and to allow for some decomposition of the latter salt at the elevated temperatures.

PROCEDURE:

Use two standard steel samples containing known quantities of manganese, as well as two unknown samples.

NOTE: DO NOT DRY THE MANGANESE (Mn) SAMPLES IN THE OVEN.

For ease of calculation, weigh accurately 0.5 g for each of the two(2) standard and two (2) unknown steel samples (to within 0.01 g of each other). Note that if the digital electronic balance is used, the sample vial being weighed should be placed on top of an inverted 50 mL beaker since the sample is ferromagnetic and thus may interfere with the balance mechanism.

Place the 4 steel samples in separate 250 mL beakers In the fumehood, add to each beaker 25 mL 1:3 nitric acid (that is, to prepare enough for all the 4 samples, prepare a total of 100 mLs by adding 25 mL of conc. HNO₃ to 75 mL H₂O). Heat on a hot plate to dissolve. Cover each solution
with a watch glass; boil gently for two minutes to remove nitric oxide. The black residue which may
remain is probably carbon which will not interfere if allowed to settle later in the volumetric flask.

Remove the beaker from the heating source, carefully sprinkle 0.5 g ammonium persulfate
into the solution. Boil gently for 15 minutes to destroy excess persulfate and carbon.

Dilute the solution to approximately 50 mL, add 8 mL of stock 85% phosphoric acid, and 0.25
g potassium periodate. After boiling gently for several minutes to cause the oxidation to
permanganate, remove the heat source, and while the solution is still hot, but not boiling, add another
0.1 g portion of g potassium periodate. You may need a further 0.1 g portion if the permanganate
color does not develop. If a precipitate of small dark particles is seen at this point it is probably
carbon, (on the rare instance that it is not, you may add 0.25 g sodium bisulfite, heat, re-add 0.1 g of
potassium periodate and reheat). If it does not respond to this treatment, it is probably carbon. After
cooling, transfer quantitatively to a 250 mL volumetric flask and carefully make up to volume. The
solution may be stored in a dry, stoppered 250 mL Erlenmeyer flask.

Serial dilution of standards: Carry out a serial, quantitative dilution of one of the standard samples, 4
times (that is, each time by a factor of 2) to have the series of known concentrations needed to plot a
calibration curve. For the data, one has to measure absorbance by means of the UV-vis spectrophotometer.
According to Beer’s Law, the absorbance (A) is directly proportional to the concentration (c) of the
absorbing species in solution, \(A = \varepsilon \cdot c \cdot b \) (where \(\varepsilon \) is the extinction coefficient, and \(b \) is the path length—usually
1 cm). You are to determine if Beer's Law is obeyed (see below). Refer to your textbook or notes for a more
detailed discussion of Beer’s Law.

SPECTROPHOTOMETRIC DETERMINATION (refer to your textbook for appropriate
theoretical discussion):

Follow the operating procedure below.

Determine \(\lambda_{\text{max}} \).

Fill the reference cell with distilled water and the sample cell with one of the standard steel
solutions. Take readings at 480, 520, 560, and 600 nm. Note that at every change in wavelength, the
reference cell must first be used to set the absorbance to zero. In your notebook, draw a plot of
absorbance (A, y-axis) vs. wavelength (\(\lambda \), x-axis) to determine the optimal wavelength (\(\lambda_{\text{max}} \)).

Determine calibration curve using one undiluted standard solution.

Select the wavelength of peak absorbance, (\(\lambda_{\text{max}} \)). At \(\lambda = \lambda_{\text{max}} \), measure Absorbance (A, y-
axis) vs. concentration (x-axis). To do this, absorbance at \(\lambda_{\text{max}} \) is measured for each of the diluted
standards as well as the undiluted second standard and the two undiluted unknown solutions (namely,
a total of 8 solutions). It is convenient to express the concentration in terms of % Mn instead of using
molar concentrations since the initial weights and the final volumes of the unknowns and standards
are equal to each other – thus making the %Mn directly proportional to the molarity of Mn. It takes
about 2 mL of solution in the sample cell (i.e. the plastic cuvette) to obtain a reading. Be sure to use
the same sample cell for all your calibrations and measurements. Record your results in the same
table format as on the attached sheet. Since the same sample cell is used several times, it is important
to rinse the sample cell quantitatively with the next unknown sample solution to be measured.

At \(\lambda = \lambda_{\text{max}} \), determine if Beer's Law is observed by plotting (see example graph attached)
Absorbance (A, y-axis) vs. concentration (%Mn, x-axis). The standard (calibration) curve is obtained
by drawing the best straight line that most closely approximates the data points. Use this curve to
determine the % Mn corresponding to the absorbance of the unknown solutions. Both of these plots
are to be included with your informal report.
Determining %Mn in the unknown.

For data that is limited to 2 readings only, i.e. one for the known and one for the unknown, it is possible to determine the %Mn of the unknown algebraically by using the Beer’s Law equation and taking ratios. For example, $A_{\text{unk}} = \varepsilon c_{\text{unk}} b$ and $A_{\text{std}} = \varepsilon c_{\text{std}} b$ therefore, $\frac{A_{\text{unk}}}{A_{\text{std}}} = \frac{c_{\text{unk}}}{c_{\text{std}}}$ since ε and b are the same for both and where $c_{\text{unk}} = \frac{(\%Mn)_{\text{unk}} \text{(mass)}_{\text{unk}}}{(MW)_{Mn} V_{\text{unk}}}$ and $c_{\text{std}} = \frac{(\%Mn)_{\text{std}} \text{(mass)}_{\text{std}}}{(MW)_{Mn} V_{\text{std}}}$

Here: $V_{\text{std}} = V_{\text{unk}}$, and MW is equal, so: $
\frac{A_{\text{unk}}}{A_{\text{std}}} = \frac{(\%Mn)_{\text{unk}} \text{(mass)}_{\text{unk}}}{(\%Mn)_{\text{std}} \text{(mass)}_{\text{std}}}$, just solve for $(\%Mn)_{\text{unk}}$

(Note that the algebraic method is valid only if the data is very accurate and if Beer’s law is obeyed by the data)

Or, one can, calculate the molar absorptivity, ε, of permanganate from the standard sample and apply this to the unknown sample using Beer’s Law. (note that $[Mn]=[MnO_4^-]$)

Because the algebraic methods of calculation outlined above presume that the data lie on the standard curve, it is more prone to error than the graphical method using the standard curve. As such, the informal report should be based on the graphical method for greater accuracy.

NOTE:

A. Ferric ions interact with permanganate ions to reduce the absorbance of permanganate slightly. Thus, standard steel is used for correction. Should standard permanganate solution be used, ferric nitrate must be added.

B. During the addition of ammonium persulfate, black manganese oxide may form. It may be redissolved by the addition of a few drops of dilute sodium sulfite solution followed by boiling to expel sulfur dioxide.

C. Complexes of ferric ion with phosphoric acid do not absorb visible light while ferric ion in nitric or hydrochloric acid absorbs appreciably at 520 nm.

D. Analyze permanganate solutions on the day of preparation or add excess periodate and store in a sealed vessel in the dark. Periodate prevents permanganate from slow reduction.

FURTHER READING:

*Operating procedures for the spectrophotometer:

Turn on the spectrophotometer using the on/off switch at the back of the device and let it warm up for about 10 minutes. Have 2 identical cuvettes – one a reference cell (to be filled with the “blank” solution, which in this case is water), and the other a sample cell (to be filled with the absorbing solutions). Have all your solutions (the 2 undiluted unknown solutions, the standard #1 -both undiluted and diluted, and standard #2 which acts as a back-up) ready when measurements are made. It is important to make all the measurements in a single sitting to minimize drift in the data. It is necessary to “zero” the absorbance first whenever the wavelength is changed. To zero the
absorbance, set the wavelength by scrolling the wavelength up or down using the “nm” or “nm” buttons. Insert the reference cell (with the blank solution) into the cuvette holder making sure it is properly aligned to maximize the pathlength through the solution. Close the cover and press the “O Abs” button and wait for the digital read out to adjust to zero. The sample cell can now be inserted in place of the reference cell. The digital readout is the absorbance data for the sample solution.

Note: Discard all waste in appropriate bottles as instructed. If you have any questions, please see your instructor or teaching assistant before disposing of waste.

Informal report:

Experiment: Determination of Manganese (Mn) in Steel

Date submitted: __________

Name: __________________________ Values obtained:

(1) _______ %

Locker # _______________ (2) _______%

Average value = ___________________ %

Data (Use examples below to prepare your raw data table and graph on your notebook. The small graph below is just an sample. Your graph should be much bigger)

Data Table I: A vs λ

<table>
<thead>
<tr>
<th>Wavelength (in nm)</th>
<th>Absorbance</th>
</tr>
</thead>
<tbody>
<tr>
<td>480</td>
<td></td>
</tr>
<tr>
<td>520</td>
<td></td>
</tr>
<tr>
<td>560</td>
<td></td>
</tr>
<tr>
<td>600</td>
<td></td>
</tr>
</tbody>
</table>

Data Table I: A vs %Mn (λ = λ_{max})

<table>
<thead>
<tr>
<th>Solution (expressed as % Mn)</th>
<th>Absorbance</th>
</tr>
</thead>
<tbody>
<tr>
<td>.058</td>
<td></td>
</tr>
<tr>
<td>.118</td>
<td></td>
</tr>
<tr>
<td>.235</td>
<td></td>
</tr>
<tr>
<td>.47</td>
<td></td>
</tr>
<tr>
<td>.94 (undiluted standard #1)</td>
<td></td>
</tr>
<tr>
<td>.94 (undiluted standard #2)</td>
<td></td>
</tr>
<tr>
<td>unknown #1</td>
<td></td>
</tr>
<tr>
<td>unknown #2</td>
<td></td>
</tr>
</tbody>
</table>

(n.b. this assumes std steel is 0.94% Mn)

Note: Draw the calibration curve on your laboratory notebook and attach a copy with your lab report as you turn it in to be graded.