Lecture Quiz 1 Key

The precipitation titration of 15.0 mL of AgNO₃ required 25.0 mL of .0360 M NaCl to reach equivalence. The K_{sp} of AgCl is 1.8 x 10^{-10} .

(1) What is the pAg^{+}_{free} when 5.0 mLs of the NaCl titrant has been added to the $AgNO_{3}$ analyte?

Answer B. 2.07

Solution: first get [Ag]_o:

Write the titration reaction: $Ag^+ + Cl^- --> AgCl(s)$ (presumed to be 100% completed)

At equivalence, #mol Ag = #mol Cl : so $M_1V_1 = M_2V_2$

$$[Ag]_o = M_{Cl}V_{Cl}/V_{Ag} = (.0360M)(25.0mL)/(15.0mL) = .0600M Ag^+$$

So after only 5 mLs of Cl⁻ has been added:

$$[Ag] = [Ag]_{0}(fraction)(dilution) = (0.0600)(5/25)(15/20) = 0.00900M$$

$$=> pAg^+ = -log[pAg^+] = -log(.00900) = 2.05$$

(2) What is the pAg $^+$ _{free} when 25.0 mLs of the NaCl titrant has been added to the AgNO $_3$ analyte?

Answer: D 4.87

Solution: We note that 25.0 mLs is exactly equal to the equivalence point. That is the point at which we use the K_{sp} equilibrium (otherwise, we would continue to use the assumption that the precipitation is 100% completed and that would leave no Ag^+ left in soution, which is violates the Ksp equilibrium).

The Ksp equilibrium is:
$$AgCl(s) <===> Ag^+ + Cl^-$$
. Let $x = [Ag^+]$ $x = x$

$$[Ag]^2 = 1.8x10^{-10} = > [Ag^+] = 1.34x10^{-5}M = > 4.87$$

(3) OK: here's another one. (don't look at the answer just do the problem) What is the pAg⁺_{free} when 35.0 mLs of the NaCl titrant has been added to the AgNO₃ analyte?

Solution: first, get [Cl⁻]: [Cl⁻] = [Cl]_o(excess vol)/total vol =
$$(0.0360)(10)/(50)$$
 [Cl⁻] = $.00720$ => AgCl (s) <==> Ag⁺ + Cl⁻ x $.00720+x$ so $x(.00720) \approx 1.8 \times 10^{-10}$: $x \approx (1.8 \times 10^{-10})/(.00720) = 2.5 \times 10^{-8} M$ => pAg =7.6