Chem 201 Guidelines for Test #1 - the test is on Thursday, July 13 Study the lecture notes, the assigned chapters, the assigned homework and then class discussions of the laboratory experiments (up to the level discussed in class). Be able to do problems similar to those in the homework or those discussed in class. By the midterm we expect to have covered the following topics (i.e. the topics to be tested in the midterm): Units, concentrations, basic analytical lab instruments, experimental error, statistics, gravimetric analysis, chemical equilibrium (solubility, complexes, acid/base), ionic strength, activity, mass and charge balance. | The exam is expected to be mainly problem-solving involving some of the following: | |--| | ☐ handling uncertainties/ propagation of errors (significant figures rules should be observed!). | | ☐ Statistics: confidence intervals & Q-test, compare replicate measurements, (i.e the 3 cases) | | ☐ Solutions: adjusting and converting concentration units (sometimes given the density). (eg. | | M to m, M to ppm, etc). | | ☐ gravimetry: eg common precipitating reagents, combustion analysis, factors for maximizing | | precipitation, solving for two unknowns, | | -be able to describe terms used like: digestion, etc(see list at end of chapter). | | ☐ The nickel experiment should be well understood by all even if you have not done it yet. | | ☐ Calculations involving: titration, activity, activity coefficient, mass and charge balance. | | | To provide a concrete example of a midterm exam, sample questions from a previous midterm is given below. This is just a sample to give all students an idea of the level of difficulty to be expected and will not have the same problems as the actual midterm. - 1) Consider the gravimetric determination of barium. a) In the determination of barium (Ba) in an ore, a 1.701 g sample was dried to a constant weight of 1.677 g and yielded 0.0850 g of the dry precipitate. a) Report the Ba in the sample as both %Ba and %Ba(OH)2 in the dried sample. - b) What is the %water content of the original sample? c) What is the reagent needed to precipitate the barium? What is the precipitate form? Is it the same as the weighing form? (a periodic table will be supplied). - 2) a) Calculate the osmolarity and ionic strength of the following: i. 0.330M C₂H₅OH(ethyl alcohol), ii. 0.330M CaSO₄, (30% ion pairing) iii. 0.330M Al₂(SO₄)₃ (40% ion pairing) and .10 M NaCl mixed together. Write the charge balance and mass balance equations for all the above solutions. - b) The density of a solution of sulfuric acid is determined from the following measurements: m_1 = mass of empty graduated cylinder = $29.5 \pm .5$ g, m_2 = mass of empty graduated cylinder + solution = $41.5 \pm .5$ g, V =volume of the solution = 10.0 ± 0.5 mL What is the uncertainty in the density of the sulfuric acid solution? If it has a molarity of 5.50 M, what is its molality? - 3) Experimental rabbits are fed controlled diets to study the effect of diet on cholesterol blood levels*. Suppose that the cholesterol levels in a group of 12 rabbits fed high cholesterol diets is found to be 104±21 mg/dL while those of a group of 15 control rabbits fed a regular diet is found to be 85±17 mg/dL. Can we be 95% confident that the high cholesterol diet results in significantly different cholesterol blood levels in experimental rabbits? (* blood levels are reported here as mean ± standard deviation) - 4) A 0.5235 g dry powder sample containing only NiCl₂ and NiO is dissolved and the nickel content is selectively precipitated with dimethylglyoxime. If the dried precipitate has a mass of 1.325g, ... - a) what is the %Ni content of the dry powder sample? - b) What is the % NiO content of the dry powder sample? Here are some more short problems. You should be able to do all of them within the 75 minutes of the test: - (1) A 0.0150 g of magnesium ore is analyzed using the appropriate precipitating reagent. If 20.0 mg of $Mg_2P_2O_7$ is finally obtained from this ore, what is the % Mg in the original sample? - (6) Titration of 20.0 mL phosphoric acid (H₃PO₄) requires 22.5 mL of 0.250M KOH to reach complete neutralization by the base. What is the concentration of the analyte? - (7) A solution containing 0.010M NaCl and 0.020 M MgSO₄ has an ionic strength of ...? - (8) A gravimetric determination of nickel yields the following values (in % Ni). 1.24, 1.27, 1.19, 1.25, and 1.26. Therefore, we should eliminate ______, (at 90% confidence) and the average should be ______ %Ni. - _____(9) Write the mass balance equation which applies to a solution containing phosphoric acid, H_3PO_4 (a triprotic weak acid): - $\underline{\hspace{1cm}}$ (10) In the nickel experiment, name 2 factors which may result in an erroneously low % Ni result? Longer problems: (these should also be solved within the same 75 minutes as the above....) - 1) A Standard Reference gold ore sample is certified to contain 3.19 wt % gold. A new spectrophotometric method has been developed to determine gold. By this method, the following values are obtained: 3.22, 3.30, 3.23 & 3.29. Does the spectrophotometric method give a significantly different (ie. At 95% confidence) values than the certified value? [20 pts] - (2) A solid mixture weighing 0.550 g contained only ferrous ammonium sulfate hexahydrate $(Fe(NH_4)_2SO_4\cdot 6H_2O, 392g/mol)$ and ferrous chloride hexahydrate $(FeCl_2\cdot 6H_2O, 235\ g/mol)$. It is dissolved and precipitated and ignited to produce 0.170g of ferric oxide $(Fe_2O_3, 160.\ g/mol)$. Calculate the % Fe and % Cl in the original sample. [30 pts]