Application of mathematical, statistical, graphical or symbolic methods to maximize chemical information.

-However, this definition can be expanded to include:

biology (biometrics),

environmental science (environmetrics),

economics (econometrics).

- -Two lines of development:
 - experimental design: planning and performing experiments in a way that the resulting data contains the maximum information about stated questions.
 - multivariate data analysis: utilizing all available data in the best possible way.

Chemometrics

- 1. Errors in Quantitative Analysis & Descriptive Statistics
- 2. Signal Processing & Time-Series Analysis
- 3. Experimental Design & Optimization
- 4. Factorial Designs & Analysis
- 5. Fractional Factorial Designs & Analysis
- 6. Univariate Calibration & Least Squares
- 7. Linear -vs- Multivariate Regression
- 8. Principal Component Regression
- 9. Quality Assurance & Good Laboratory Practice

Errors in Quantitative Analysis

• <u>Student A</u>

Results have two characteristics:

- 1. All very close to each other (10.08-10.12 mL).
- 2. All too high (10.00 mL exactly).

Two types of errors have occurred:

- 1. Random cause replicate results to differ from one another \rightarrow results fall on both sides of the mean (10.10 mL in student's A case).
 - \rightarrow effect the precision or reproducibility of the experiment.
 - \rightarrow Student A small random errors (precise).
- 2. Systematic cause all the results to be in error in the same sense (High).
 - \rightarrow Total systematic error is termed bias.

Hence: Student A has precise, but biased results.

Errors in Quantitative Analysis

- No analysis is free of error!
- <u>Types of errors</u>
 - 1. Gross readily described, errors that are obvious.

Instrument breakdown, dropping a sample, contamination (gross).

- 2. Random
- 3. Systematic

Student		Comments				
А	10.08	10.11	10.09	10.10	10.12	Precise, biased
В	9.88	10.14	10.02	9.80	10.21	Imprecise, unbiased
С	10.19	9.79	9.69	10.05	9.78	Imprecise, biased
D	10.04	9.18	10.02	9.97	10.04	Precise, unbiased

Titration – each student performs an analysis in which exactly 10.00 mL of exactly 0.1 M NaOH is titrated with exactly 0.1M HCl.

Errors in Quantitative Analysis

- Accuracy How far a result is from the true value.
- Precision How close multiple determinations are to each other.

Low accuracy, low precision

Low accuracy, high precision

High accuracy, low precision

High accuracy, high precision

1. Basic Statistics Descriptive

Spectrophotometric measurement (Abs) of a sample solution from 15 replicate measurements.

Measurement	Value	Measurement	Value
1	0.3410	9	0.3430
2	0.3350	10	0.3420
3	0.3470	11	0.3560
4	0.3590	12	0.3500
5	0.3530	13	0.3630
6	0.3460	14	0.3530
7	0.3470	15	0.3480
8	0.3460		

Descriptive statistics for the spectrophotometric measurements.

Parameter	Value
Sample #, n	15
Mean	0.3486
Median	0.347
Std Dev	0.00731
RSD %	2.096
Std error	0.00189
Max value	0.363
Min value	0.335

Statistical Tests – Student's *t*-test, *F*-test, tests for outliers Distributions – Gaussian, Poisson, binominal

1. Statistics of Repeated Measurements

Mean
$$\overline{x} = \frac{\sum x_i}{n}$$

Standard deviation $s = \sqrt{\sum (x - \overline{x})^2 / (n - 1)}$

Student A

Total

\mathcal{X}_{i}	$(x_i - \overline{x})$	$(x_i - \overline{x})^2$
10.08	-0.02	0.0004
10.11	0.01	0.0001
10.09	-0.01	0.0001
10.10	0.00	0.0000
10.12	0.02	0.0010
50.50	0	0.0010

$$\overline{x} = \frac{\sum x_i}{n} = \frac{50.50}{5} = 10.1 mL$$

$$s = \sqrt{\sum (x - \overline{x})^2 / (n - 1)} = \sqrt{0.001/4} = 0.0158 \, mL$$

- 2. Distribution of Repeated measurements
 - 1. Gaussian distribution
 - **Bell-shaped curve for the frequency of the measurements**

Fig. 1 – Histogram for the measurements of spectrophotometric data. Theoretical distribution with the Gaussian curve in the solid line.

11

- 3. Significance Tests in Analytical Measurements
 - > Testing the truth of the hypothesis (null hypothesis, H_0)
 - Null = implies that no difference exists between the observed and known values \overline{x}

Assuming H_0 is true, stats can be used to calculate the probability that the difference between and true value, μ , arises solely as a result of <u>random errors</u>.

Is the difference significant?

 $t = \frac{|\bar{x} - \mu|}{s} \sqrt{n}$ one variable t - test (student's t)

where s = estimate of the standard deviation

n = number of parallel measurements

- 3. Statistical tests
 - A. Student's t
 - If /t/ exceeds a certain critical value, then the H_o is rejected,

Table A.2 The t-distribution				
Value of t for a confidence interval of	90%	95%	98%	99%
Critical value of t for P values of number of degrees of freedom	0.10	0.05	0.02	0.01
1	6.31	12.71	31.82	63.66
2	2.92	4.30	6.96	9.92
3	2.35	3.18	4.54	5.84
4	2.13	2.78	3.75	4.60
5	2.02	2.57	3.36	4.03
б	1.94	2.45	3.14	3.71
7	1.89	2.36	3.00	3.50
8	1.86	2.31	2.90	3.36
9	1.83	2.26	2.82	3.25
10	1.81	2.23	2.76	3.17
12	1.78	2.18	2.68	3.05
14	1.76	2.14	2.62	2.98
16	1.75	2.12	2.58	2.92
18	1.73	2.10	2.55	2.88
20	1.72	2.09	2.53	2.85
30	1.70	2.04	2.46	2.75
50	1.68	2.01	2.40	2.68
x	1.64	1.96	2.33	2.58

The critical values of |t| are appropriate for a *two*-tailed test. For a *one*-tailed test the value is taken from the column for *twice* the desired *P*-value, e.g. for a one-tailed test, P = 0.05, 5 degrees of freedom, the critical value is read from the P = 0.10 column and is equal to 2.02.

- 3. Statistical tests
 - A. Student's t
 - Ex: The following results were obtained in the determination of Fe³⁺ in water samples.

504 ppm 50.7 ppm 49.1 ppm 49.0 ppm 51.1 ppm

Is there any evidence of systematic error?

$$\overline{x} = 50.06$$
 $s = 0.956$

 $H_o \rightarrow$ no systematic error, i.e., $\mu = 50$ and using equations Table: critical value is $t_4 = 2.78$ (p=0.05).

<u>NO</u> significant difference since the observed |t| is less than the critical value (H_o retained)

- 3. Statistical tests
 - B. Two-sided *t*-test

A comparison of two sample means:
$$\overline{x}_1 - \overline{x}_2$$

$$t = \frac{|\overline{x}_1 - \overline{x}_2|}{s_d} \sqrt{\frac{n_1 n_2}{n_1 + n_2}}$$

where : n_1 , $n_2 = \#$ of parallel determinations for \bar{x}_1 and \bar{x}_2 s_d = weighted averaged standard deviation:

$$s_d = \sqrt{\frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}}$$

Note: The null hypothesis is accepted if \overline{x}_1 and \overline{x}_2 are different only randomly at risk level *P*, i.e. if the calculated *t*-value is lower than the tabulated value for *t*.

- 3. Statistical test
 - C. F-test
 - Used to compare the standard deviations of two random samples $F = \frac{s_1^2}{s_2^2}$ (where $s_1^2 > s_2^2$)

Note : The null hypothesis is accepted if s_1^2 and s_2^2 differ randomly, i.e., if the calculated *F*-value is lower than *F*-distribution from the Table with $v_1 + v_2$ degrees of freedom.

3. Statistical test *F*- test

Table A.3 Critical values of F for a one-tailed test (P = 0.05)

V2	/2						<i>v</i> ₁							
_	1	2	3	4	5	6	7	8	9	10	12	15	20	
1	161.4	199.5	215.7	224.6	230.2	234.0	236.8	238.9	240.5	241.9	243.9	245.9	248.0	
2	18.51	19.00	19.16	19.25	19.30	19.33	19.35	19.37	19.38	19.40	19.41	19.43	19.45	
3	10.13	9.552	9.277	9.117	9.013	8.941	8.887	8.845	8.812	8.786	8.745	8.703	8.660	
4	7.709	6.944	6.591	6.388	6.256	6.163	6.094	6.041	5.999	5.964	5.912	5.858	5.803	
5	6.608	5.786	5.409	5.192	5.050	4.950	4.876	4.818	4.772	4.735	4.678	4.619	4.558	
б	5.987	5.143	4.757	4.534	4.387	4.284	4.207	4.147	4.099	4.060	4.000	3.938	3.874	
7	5 591	4.737	4.347	4.120	3.972	3.866	3.787	3,726	3.677	3.637	3.575	3.511	3.445	
8	5.318	4.459	4.066	3.838	3.687	3.581	3,500	3.438	3.388	3.347	3.284	3.218	3.150	
9	5.117	4.256	3.863	3.633	3.482	3.374	3.293	3.230	3.179	3.137	3.073	3.006	2.936	
10	4.965	4.103	3.708	3.478	3.326	3.217	3.135	3.072	3.020	2.978	2.913	2.845	2.774	
11	4.844	3.982	3.587	3.357	3.204	3.095	3.012	2.948	2.896	2.854	2.788	2.719	2.646	
12	4.747	3.885	3.490	3.259	3.106	2.996	2.913	2.849	2.796	2.753	2.687	2.617	2.544	
13	4.667	3.806	3.411	3.179	3.025	2.915	2.832	2.767	2.714	2.671	2.604	2.533	2.459	
14	4.600	3.739	3.344	3.112	2.958	2.848	2.764	2.699	2.646	2.602	2.534	2.463	2.388	
15	4.543	3.682	3.287	3.056	2.901	2.790	2.707	2.641	2.588	2.544	2.475	2.403	2.328	
16	4.494	3.634	3.239	3.007	2.852	2.741	2.657	2.591	2.538	2.494	2.425	2.352	2.276	
17	4.451	3.592	3.197	2.965	2.810	2.699	2.614	2.548	2.494	2.450	2.381	2.308	2.230	
18	4.414	3.555	3.160	2.928	2.773	2.661	2.577	2.510	2.456	2.412	2.342	2.269	2.191	
19	4.381	3.522	3.127	2.895	2.740	2.628	2.544	2.477	2.423	2.378	2.308	2.234	2.155	
20	4.351	3.493	3.098	2.866	2.711	2.599	2.514	2.447	2.393	2.348	2.278	2.203	2.124	

 $v_1 =$ number of degrees of freedom of the numerator and $v_2 =$ number of degrees of freedom of the denominator.

- 3. Statistical test
 - Ex. Determination of titanium content (absolute %) by two laboratories.

<u>Lab 1</u>	Lab2
0.470	0.529
0.448	0.490
0.463	0.489
0.449	0.521
0.482	0.486
0.454	0.502
0.477	
0.409	

Compare the standard deviations between the two laboratories:

$$F = \frac{s_1^2}{s_2^2} = \frac{0.0229^2}{0.0182^2} = 1.58$$
 Critical Value from the table = 6.85

Calculated value is lower than the tabulated, hence the test result is not significant (only random differences).

- 3. Significance Tests
 - D. Dixon's Q-test
 - \rightarrow Test for the determination of outliers in data sets

$$Q = \frac{|x_2 - x_1|}{|x_n - x_1|} \quad and \quad Q_n = \frac{|x_n - x_{n-1}|}{|x_n - x_1|}$$

→ The H_o, i.e., that no outlier exists, is accepted if the quantity Q < Q(1-P;n)

Table: Critical values for the Q-test at H_0 at the 1% risk level

n	Q(0.99; n)
3	0.99
4	0.89
5	0.76
6	0.70
7	0.64
8	0.59
9	0.56
10	0.53
11	0.50
12	0.48
13	0.47
14	0.45
15	0.44
20	0.39

- 3. Significance Tests
 - Ex: Trace analysis of PAH's in soil reveals benzo [a] pyrene in the following amounts (mg kg⁻¹)
 - 5.30 5.00 5.10 5.20 5.10 6.20 5.15
 - \rightarrow Use the Q test to determine if the largest & smallest are outliers

$$Q = \frac{|5.10 - 5.00|}{|6.20 - 5.00|} = 0.083 \qquad Q_n = \frac{|6.20 - 5.30|}{|6.20 - 5.00|} 0.75$$

Critical values from the Table, Q(1-P = 0.99; n = 7) = 0.64

For the smallest, $Q_1 < Q_{calc}$, thus the value cannot be an outlier For the largest, $Q_1 > Q_{calc}$, then the outlier exists

Why is this determination important?

- 3. Significance Tests
 - E. Analysis of variance (ANOVA)
 - → Separate and estimate the causes of variation, more than one source of random error. Example?
 - Note: There are numerous chemometric tools which can be used with ANOVA.
 - \rightarrow We will cover them in this course!

E. ANOVA

\rightarrow Within sample variation

Conditions	Replicate Measurements	Mean
A. Freshly prepared	102, 100, 101	101
B. Stored for 1 hr in the dark	101, 101, 104	102
C. Stored for 1 hr in the subdued light	97, 95, 99	97
D. Stored for 1 hr in bright light	90, 92, 94	97

For each sample, the variance can be calculated:

$$\sum \frac{(x_i - \overline{x})^2}{(n-1)}$$

E. ANOVA

Sample A =
$$\frac{(102 - 101)^2 + (100 - 101)^2 + (101 - 101)^2}{3 - 1} = 1$$

Sample B =
$$\frac{(101 - 102)^2 + (101 - 102)^2 + (104 - 102)^2}{3 - 1} = 3$$

C + D = 4

Sample Mean variance

$$\frac{(101-98)^2 + (102-98)^2 + (97-98)^2 + (92-98)^2}{3-1} = 62/3$$

Note: This estimate has 3 degrees of freedom since it is calculated from 4 samples

E. ANOVA

Summarizing our calculations:

within - sample mean square = 3 with 8 d.f.

between - sample mean sample = 62 with 3 d.f.

F = 62/3 = 20.7

From Table – the critical value of F = 4.066 (P = 0.05)

- since the calculated value of F is greater than this, the null hypothesis is rejected: the sample means <u>DO</u> differ significantly.

E. The Arithmetic of ANOVA calculations

Source of Variation	Sum squares	<u>d.f.</u>
Between – sample	$\sum_{i} \frac{Ti^2}{n} - \frac{T^2}{N}$	h-1
within – sample	by subtraction	by subtraction
Total	$\sum_{i} \sum_{j} x_{ij}^{2} - \frac{T^{2}}{N}$	N-1

where N = nh = total # of measurements

Ti = sum of the measurements in the *i* th sample

T = sum of all the measurements

- The test statistic is F = between sample mean square / within sample mean square and the critical value is F $_{h-t, N-h}$

Test whether the samples in previous table were drawn from population, with equal means. (All values have had 100 subtracted from them)

				<u>Ti</u>	<u>Ti</u> ²
А	2	0	1	3	9
В	1	1	4	6	36
С	-3	-5	-1	-9	81
D	-10	-8	-6	-24	576
					$\sum T^2_i = 702$

n=3, h=4, N=12,
$$\sum_{i} \sum_{j} x_{ij}^{L} = 258$$

28

Source of Variation	Sum of Squares	d.f.	Mean Square
Between sample	702/3-(-24)/12=186	3	186/3 = 62
Within sample	By subtraction =24	8	24/8=3
Total	258-(-24)2/12 = 210	11	
	F= 62/3 = 20.7		
	→ Significant difference		

Determining Concentration from Calibration Curve

Basic steps:

(1) Make a series of dilutions of known concentration for the analyte.

(2) Analyze the known samples and record the results.

(3) Determine if the data is linear.

(4) Draw a line through the data and determine the line's slope and intercept.

(5) Test the unknown sample in duplicate or triplicate. Use the line equation to determine the concentration of the analyte: y = mx + b

 $Conc_{analyte} = \frac{reading - intercept}{slope}$

Calibration Cont...

<u>Limit of Detection (LOD)</u> - lowest amount of analyte in a sample which can be detected but not necessarily quantitated as an exact value.

- mean of the blank sample plus 2 or 3 times the SD obtained on the blank sample (i.e., $LOD = mean_{blk} + Zs_{blk}$)

LOD calculation - alternative

Data required:

(1) calibration sensitivity = slope of line through the signals of the concentration standards including blank solution

(2) standard deviation for the analytical signal given by the blank solution

 $LOD = \frac{3x SD blank signals}{\text{slope of signals for std's}}$

Outliers

Treatment of Outliers

- 1. Re-examine for Gross Errors
- 2. Estimate Precision to be Expected
- 3. Repeat Analysis if Time and Sufficient Sample is Available
- 4. If Analysis can not be Repeated, Perform a Q-Test
- 5. If Q-Test Indicates Retention of Value, Consider Reporting the Median