On (d, 1)-Total Numbers of Graphs

Ko-Wei Lih *
Institute of Mathematics, Academia Sinica, Nankang, Taipei 11529, Taiwan
Daphne Der-Fen Liu ${ }^{1}$
Department of Mathematics, California State University, Los Angeles, Los Angeles, CA 90032, USA
Weifan Wang ${ }^{2}$
Department of Mathematics, Zhejiang Normal University, Jinhua, Zhejiang 321004, China

Abstract

A ($d, 1$)-total labelling of a graph G assigns integers to the vertices and edges of G such that adjacent vertices receive distinct labels, adjacent edges receive distinct labels, and a vertex and its incident edges receive labels that differ in absolute value by at least d. The span of a ($d, 1$)-total labelling is the maximum difference between two labels. The ($d, 1$)-total number, denoted $\lambda_{d}^{T}(G)$, is defined to be the least span among all ($d, 1$)-total labellings of G. We prove new upper bounds for $\lambda_{d}^{T}(G)$, compute some $\lambda_{d}^{T}\left(K_{m, n}\right)$ for complete bipartite graphs $K_{m, n}$, and completely determine all $\lambda_{d}^{T}\left(K_{m, n}\right)$ for $d=1,2,3$. We also propose a conjecture on an upper bound for $\lambda_{d}^{T}(G)$ in terms of the chromatic number and the chromatic index of G.

Key words: channel assignment, $L(2,1)$-labelling, (d, 1)-total labelling, chromatic number, chromatic index

[^0]
1 Introduction

Let d be a positive integer and $G(V, E)$ be a finite graph without loops or multiple edges. We always assume that G has at least one edge without explicitly saying so. A $(d, 1)$-total labelling of G is an integer-valued function f defined on the set $V(G) \cup E(G)$ such that

$$
|f(x)-f(y)| \geqslant \begin{cases}1 & \text { if vertices } x \text { and } y \text { are adjacent } \\ 1 & \text { if edges } x \text { and } y \text { are adjacent } \\ d & \text { if vertex } x \text { and edge } y \text { are incident. }\end{cases}
$$

We may require $|f(x)-f(y)|$, for adjacent elements x and y, be greater than or equal to s, instead of 1 , in the above defining inequality for some given positive integer s to get a more general notion of a (d,s)-total labelling; nevertheless we concentrate our attention only to the special case $s=1$ in this paper. A $(d, 1)$-total labelling taking values in the set $\{0,1, \ldots, k\}$ is called a $[k]-(d, 1)$ total labelling. The span of a ($d, 1$)-total labelling is the maximum difference between two labels. The minimum span, i.e. the minimum k, among all $[k]$ $(d, 1)$-total labellings of G, denoted $\lambda_{d}^{T}(G)$, is called the $(d, 1)$-total number of G.

A $(d, 1)$-total labelling of G is a generalization of an $L(2,1)$-labelling of the subdivision of G studied in Whittlesey, Georges, and Mauro [15]. The notion of an $L(2,1)$-labelling was motivated by an interference avoidance problem, introduced in Hale [7], in the assignment of radio frequency bands to transmitters. An $L(2,1)$-labelling of G assigns nonnegative integer labels to the vertices of G so that vertices at distance two receive distinct labels and adjacent vertices receive labels that differ in absolute value by at least 2. Griggs and Yeh [6] initiated a systematic study into $L(2,1)$-labellings of graphs that has been intensively developed ever since. The reader is referred to Yeh [17] for a recent survey of results and generalizations of $L(2,1)$-labellings. The subdivision G^{S} of a graph G is the graph obtained by inserting one new vertex to each of the edges of G. If we define the span of an $L(2,1)$-labelling to be the maximum difference between two labels, then the minimum span among all $L(2,1)$-labellings of G^{S} is precisely $\lambda_{2}^{T}(G)$.

Havet and $\mathrm{Yu}[8]$ first introduced the notion of a $(d, 1)$-total labelling and their results have published only recently in [9]. Let $\Delta(G)$ denote the maximum degree of G. Havet and Yu proposed the following conjecture.
$(d, 1)$-Total Labelling Conjecture. $\lambda_{d}^{T}(G) \leqslant \min \{\Delta(G)+2 d-1,2 \Delta(G)+$ $d-1\}$.

In addition to [9], positive evidence to this conjecture has also been given in [1], [4], and [13]. Note that $\lambda_{1}^{T}(G)+1$ is equal to the total chromatic number $\chi^{\prime \prime}(G)$ of the graph G and the $(d, 1)$-total labelling conjecture for the case $d=1$ is equivalent to the well-known Total Coloring Conjecture proposed by Behzad [2] and independently by Vizing [14].

It should be pointed out that a $(d, 1)$-total labelling is a special case $(r=s=1)$ of an $[r, s, d]$-coloring introduced and studied in [10], [11], and [12]. The $[1,1, d]$ chromatic number $\chi_{1,1, d}(G)$ of a graph G defined there is exactly $\lambda_{d}^{T}(G)+1$.

In Section 2, we will derive upper bounds for $\lambda_{d}^{T}(G)$. Based on these values, we propose an upper bound conjecture in terms of the chromatic number and the chromatic index of G.

In Section 3, we compute some values of $\lambda_{d}^{T}\left(K_{m, n}\right)$ for complete bipartite graphs $K_{m, n}$ and completely determine all $\lambda_{d}^{T}\left(K_{m, n}\right)$ for $d=1,2,3$. These values give further support to the $(d, 1)$-total labelling conjecture.

2 Upper Bounds

We are going to present upper bounds for $\lambda_{d}^{T}(G)$ in terms of its maximum degree $\Delta(G)$, chromatic number $\chi(G)$, chromatic index $\chi^{\prime}(G)$, and list chromatic index $\chi_{l}^{\prime}(G)$. We will propose a conjecture on an upper bound of $\lambda_{d}^{T}(G)$ at the end of this section.

Let $\chi(G)$, or $\chi^{\prime}(G)$, denote the smallest number of colors needed to color the vertices, respectively the edges, of G so that adjacent elements receive distinct colors. A vertex-coloring or an edge-coloring satisfying the above condition is said to be a proper vertex-coloring or edge-coloring. If each edge e of G is assigned a list $L(e)$ of possible colors and G has a proper edge-coloring ϕ such that $\phi(e) \in L(e)$ for all $e \in E(G)$, then we say that G is L-edge-colorable. The graph G is said to be k-edge-choosable if it is L-edge-colorable for every assignment L satisfying $|L(e)|=k$ for all $e \in E(G)$. Let $\chi_{l}^{\prime}(G)$ denote the smallest k such that G is k-edge-choosable.

The following two lemmas were proved in Havet and Yu [9] and the case for $d=2$ first appeared in Whittlesey, Georges, and Mauro [15].

Lemma 1 For any graph $G, \lambda_{d}^{T}(G) \leqslant \chi(G)+\chi^{\prime}(G)+d-2$.
Lemma 2 For any graph $G, \lambda_{d}^{T}(G) \leqslant 2 \Delta(G)+d-1$.
Throughout this paper, a proper vertex-coloring, or edge-coloring, using colors from the set $\{0,1, \ldots, k-1\}$ is said to be a k-vertex-coloring, or k-edge-
coloring. For integers $a \leqslant b$, we use $[a, b]$ to denote the set $\{a, a+1, \ldots, b\}$. For integers a and d, the set $[a-d+1, a+d-1]$ is denote by $[a]_{d}$.

Theorem 3 For any graph $G, \lambda_{d}^{T}(G) \leqslant \chi_{l}^{\prime}(G)+4 d-3$.
Proof. Since $\chi(G) \leqslant \Delta(G)+1$, we can give a proper vertex-coloring f_{1} for G using colors $0,1, \ldots, \Delta(G)$. For each edge $e=x y$, we define the list

$$
L(e)=\left[0, \chi_{l}^{\prime}(G)+4 d-3\right] \backslash\left(\left[f_{1}(x)\right]_{d} \cup\left[f_{1}(y)\right]_{d}\right) .
$$

As $|L(e)| \geqslant \chi_{l}^{\prime}(G)$, there exists an L-coloring f_{2} for the edges of G. Since $\chi_{l}^{\prime}(G) \geqslant \chi^{\prime}(G) \geqslant \Delta(G)$, we have $\chi_{l}^{\prime}(G)+4 d-3 \geqslant \Delta(G)$. Consequently, $f_{1} \cup f_{2}$ forms a $\left[\chi_{l}^{\prime}(G)+4 d-3\right]$ - $(d, 1)$-total labelling of G.

Borodin, Kostochka, and Woodall [3] proved that $\chi_{l}^{\prime}(G) \leqslant\left\lfloor\frac{3}{2} \Delta(G)\right\rfloor$ for a multigraph graph G. Hence, by Theorem 3, the following upper bound for $\lambda_{d}^{T}(G)$ emerges.

Theorem 4 For any graph G, $\lambda_{d}^{T}(G) \leqslant\left\lfloor\frac{3}{2} \Delta(G)\right\rfloor+4 d-3$.
Note that, for fixed d and sufficient large $\Delta(G)$, the upper bound for $\lambda_{d}^{T}(G)$ in Theorem 4 is better than the one in Lemma 2. In the rest of this section, we shall improve the bounds of Lemmas 1 and 2 .

Theorem 5 Let G be a graph with $\chi(G)=k$ and $\chi^{\prime}(G)=k^{\prime}$. If $k \geqslant 3 d$, then $\lambda_{d}^{T}(G) \leqslant s+k^{\prime}-1$, where s is equal to $4 d-2$ when $k=3 d$ or $3 d+1$, and equal to $\lceil(k+9 d-5) / 3\rceil$ when $k \geqslant 3 d+2$.

Proof. We choose a mapping $f: V(G) \cup E(G) \rightarrow\left[0, s+k^{\prime}-1\right]$ such that the restriction of f to $V(G)$ is a k-vertex-coloring and the restriction of f to $E(G)$ is a proper edge-coloring using colors in $\left[s, s+k^{\prime}-1\right]$.

Let G^{\prime} be the subgraph of G induced by the edges in $E^{\prime}=\{e \in E(G) \mid f(e) \in$ $[s, k+d-2]\}$. Then $\Delta\left(G^{\prime}\right) \leqslant k+d-s-1$. To any $e=x y \in E\left(G^{\prime}\right)$, we assign the list $L(e)=[0, k+d-2] \backslash\left([f(x)]_{d} \cup[f(y)]_{d}\right)$. Then $|L(e)| \geqslant k-3 d+1$. Since $\Delta\left(G^{\prime}\right) \leqslant k+d-s-1, G^{\prime}$ is a disjoint union of edges when $k=3 d$, and is a disjoint union of paths and even cycles when $k=3 d+1$. It is wellknown that $\chi_{l}^{\prime}\left(G^{\prime}\right) \leqslant|L(e)|$ in these cases. When $k \geqslant 3 d+2$, it follows from $s \geqslant(k+9 d-5) / 3$ that $3(k+d-s-1) / 2 \leqslant k+3 d+1$. Since $\chi_{l}^{\prime}\left(G^{\prime}\right) \leqslant$ $\lfloor 3 \Delta(G) / 2\rfloor \leqslant 3(k+d-s-1) / 2$, we have $\chi_{l}^{\prime}\left(G^{\prime}\right) \leqslant|L(e)|$ again. Hence, there always exists an L-edge-coloring f^{\prime} for G^{\prime}. Re-labelling edges in G^{\prime} by f^{\prime} while keeping the rest of G unchanged, we get an $\left[s+k^{\prime}-1\right]-(d, 1)$-total labelling for G.

By Theorem 5, the following conjecture holds for graphs with $\chi(G) \geqslant 3 d$.

Conjecture 1 Let a graph G satisfy $\chi(G)>\max \{2, d\}$. Then

$$
\lambda_{d}^{T}(G) \leqslant \chi(G)+\chi^{\prime}(G)+d-3
$$

The known values of $\lambda_{d}^{T}\left(K_{n}\right)$ for complete graphs K_{n} on n vertices that have been computed in [9] support the above conjecture. The following corollary also appeared in [9].

Corollary 6 Let G be a bipartite graph. Then $\Delta(G)+d-1 \leqslant \lambda_{d}^{T}(G) \leqslant$ $\Delta(G)+d$ and $\lambda_{d}^{T}(G)=\Delta(G)+d$ when $d \geqslant \Delta(G)$ or G is regular.

For a bipartite graph G, it is well-known that $\chi^{\prime}(G)=\Delta(G)$. Hence, a consequence of Corollary 6 is $\lambda_{d}^{T}(G)=\Delta(G)+d=\chi(G)+\chi^{\prime}(G)+d-2$ for a bipartite regular graph G. This together with the fact $\lambda_{4}^{T}\left(K_{4}\right)=9$ show that the assumption $\chi(G)>\max \{2, d\}$ in Conjecture 1 cannot be removed.

3 Complete Bipartite Graphs

The following can be easily derived when we examine the label of a vertex of maximum degree and the labels of its incident edges.

Lemma 7 (1) $\lambda_{d}^{T}(G) \geqslant \Delta(G)+d-1$.
(2) If $\lambda_{d}^{T}(G)=\Delta(G)+d-1$, then each vertex of maximum degree is labelled with 0 or $\Delta(G)+d-1$ in any $[\Delta(G)+d-1]-(d, 1)$-total labelling.

Throughout this section, let $K_{m, n}(m \geqslant n)$ denote the complete bipartite graph with parts $X=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ and $Y=\left\{y_{1}, y_{2}, \ldots, y_{m}\right\}$. By Corollary $6, m+d-1 \leqslant \lambda_{d}^{T}\left(K_{m, n}\right) \leqslant m+d$. When a function f is defined over the edges of $K_{m, n}$, we write $f(i, j)$ for $f\left(x_{i} y_{j}\right)$. Furthermore, let $X_{i}=\{f(i, j) \mid 1 \leqslant j \leqslant m\}$ and $Y_{j}=\{f(i, j) \mid 1 \leqslant i \leqslant n\}$.

Theorem 8 The following statements are equivalent.
(1) $m \geqslant \min \{2 n, n+2 d-1\}$ and $m \geqslant n+d$.
(2) There exists an $[m+d-1]-(d, 1)$-total labelling f for $K_{m, n}$ such that $f(x)=0$ for all $x \in X$, or $f(x)=m+d-1$ for all $x \in X$.

Proof. $(1) \Rightarrow(2)$. We are going to construct an $[m+d-1]-(d, 1)$-total labelling f for $K_{m, n}$ such that $f(x)=0$ for all $x \in X$.

First assume that $m \geqslant 2 n$. Let ρ be the composition of the two cyclic permu-
 $f\left(x_{i}\right)=0$ for all $1 \leqslant i \leqslant n, f\left(y_{j}\right)=m+d-1$ for $1 \leqslant j \leqslant n, f\left(y_{j}\right)=1$ for $n+1 \leqslant j \leqslant m$, and $f(i, j)=(d-1)+\rho^{i-1}(j)$ for $1 \leqslant i \leqslant n$ and $1 \leqslant j \leqslant m$. Since $m \geqslant 2 n$, adjacent edges are labelled with distinct labels. We see that $Y_{j}=[d, d+n-1]$ when $1 \leqslant j \leqslant n$ and $Y_{j} \subseteq[d+n, d+m-1]$ when $n<j \leqslant m$. Since $1 \leqslant d \leqslant m-n$, the absolute difference between the label of any vertex and the label of any of its incident edge is at least d, hence f satisfies our requirements.

Next assume that $m \geqslant n+2 d-1$. Let σ be the cyclic permutation (12 $\cdots m$) on the set $[1, m]$. For $1 \leqslant i \leqslant n$ and $1 \leqslant j \leqslant m$, let $f\left(x_{i}\right)=0, f\left(y_{j}\right)=(d-1)+$ $\sigma^{n-1+d}(j)$, and $f(i, j)=(d-1)+\sigma^{i-1}(j)$. Adjacent edges are obviously labelled with distinct labels. Since $m \geqslant n+2 d-1$, we see that $\left|\sigma^{n-1+d}(j)-\sigma^{i-1}(j)\right| \geqslant d$ for $1 \leqslant i \leqslant n$ and $1 \leqslant j \leqslant m$, hence f satisfies our requirements.
$(2) \Rightarrow(1)$. Assume there exists an $[m+d-1]$ - $(d, 1)$-total labelling f for $K_{m, n}$ such that $f(x)=0$ for all $x \in X$. (By symmetry, we only need to show this case.)

Since $f\left(x_{i}\right)=0$ for all i, we have $f(i, j) \geqslant d$ and $X_{i}=[d, m+d-1]$ for all i and j. Without loss of generality, we may assume that $d \in Y_{j}$ for $1 \leqslant j \leqslant n$, and hence $f\left(y_{j}\right) \geqslant 2 d$. Let t_{j} denote the largest number in Y_{j}. Then $t_{j} \geqslant n+d-1$.

Assume that $t_{p}>f\left(y_{p}\right)$ for some $p \in[1, n]$. Then $\left[f\left(y_{p}\right)\right]_{d} \subseteq\left[d, t_{p}\right]$ and $\left[f\left(y_{p}\right)\right]_{d} \cap Y_{p}=\emptyset$. Moreover, since $\left|\left[f\left(y_{p}\right)\right]_{d}\right|=2 d-1, Y_{p} \in\left[d, t_{p}\right]$, and $\left|Y_{p}\right|=n$, it follows that $t_{p}-d+1 \geqslant n+2 d-1$. As $t_{p} \leqslant m+d-1$, we conclude that $m \geqslant n+2 d-1 \geqslant n+d$.

Assume $t_{j}<f\left(y_{j}\right)$ for all $j \in[1, n]$. Then we have $t_{j} \leqslant f\left(y_{j}\right)-d \leqslant m-1$, implying $n+d-1 \leqslant m-1$. Therefore, $m \geqslant n+d$. Moreover, it also follows that $Y_{j} \subseteq[d, m-1]$ for $1 \leqslant j \leqslant n$. This implies that the edges that can be assigned labels from the set $[m, m+d-1]$ must be incident to y_{j} for some $j \in[n+1, m]$. Hence, $n d=\sum_{j=n+1}^{m}\left|Y_{j} \cap[m, m+d-1]\right| \leqslant(m-n) d$, implying $2 n \leqslant m$.

By Theorem 8, to further investigate the values of m and n such that $\lambda_{d}^{T}\left(K_{m, n}\right)$ $=m+d-1$, it remains to study the following two possibilities.

Case 1. $m \geqslant \min \{2 n, n+2 d-1\}$ and $m<n+d$, or equivalently, $2 n \leqslant m<$ $n+d$.

Case 2. $m<\min \{2 n, n+2 d-1\}$.

We shall deal with Cases 1 and 2 in Theorems 9 and 10, respectively. There is one more notation used in the proofs of Theorems 9 and 10. For any $[m+d-1]-$ ($d, 1$)-total labelling f for $K_{m, n}$, by Lemma 7, each vertex $x_{i} \in X$ is labelled with either 0 or $m+d-1$. Denote

$$
I=\left\{i \mid f\left(x_{i}\right)=0 \text { and } 1 \leqslant i \leqslant n\right\} .
$$

Then we have $X_{i}=[d, m+d-1]$ for each $i \in I$, while $X_{i}=[0, m-1]$ for each $i \notin I$.

Theorem 9 If $2 n \leqslant m<n+d$, then $\lambda_{d}^{T}\left(K_{m, n}\right)=m+d$.
Proof. The assumption $2 n \leqslant m<n+d$ implies that $n<d$ and $m<2 d$. Suppose to the contrary that $\lambda_{d}^{T}\left(K_{m, n}\right)=m+d-1$. Let f be an $[m+d-1]-$ $(d, 1)$-total labelling. By Theorem $8,1 \leqslant|I| \leqslant n-1$. Since $d \in X_{i}$ for any $i \in I$, we have $d \in Y_{j}$ for some j. It implies that $2 d \leqslant f\left(y_{j}\right) \leqslant m+d-2$ because $f\left(y_{j}\right) \notin\{0, m+d-1\}$, and hence $d \leqslant m-2$. It follows that $d \in X_{i}$ for any $i \notin I$. Now d belongs to all X_{i} 's. Without loss of generality, we may assume that $d \in Y_{j}$ for $1 \leqslant j \leqslant n$.

Pick $i_{0} \in I$. So $X_{i_{0}}=[d, m+d-1]$. Because all $y_{j}, 1 \leqslant j \leqslant n$, are adjacent to $x_{i_{0}}$, there exists $w \geqslant n+d-1$ such that $w \in Y_{j_{0}}$ for some $j_{0} \in[1, n]$. We know that $2 d \leqslant f\left(y_{j_{0}}\right) \leqslant m+d-2$. If $\alpha \in[m-1, m+d-1]$, then $\left|f\left(y_{j_{0}}\right)-\alpha\right|<d$ since $m<2 d$. It follows that $Y_{j_{0}} \cap[m-1, m+d-1]=\emptyset$ and $n+d-1 \leqslant w \leqslant m-2$, contradicting the assumption $m<n+d$.

Theorem 10 Suppose that $m<\min \{2 n, n+2 d-1\}$ and $\lambda_{d}^{T}\left(K_{m, n}\right)=m+d-1$. Then all the following statements hold.
(1) $m \geqslant 3 d+1$.
(2) $(n-m+3 d-1)(2 n-m) \leqslant n d$.
(3) $m \geqslant n+d$.
(4) $n / m \leqslant(\alpha+1) /(\alpha+2)$, where $\alpha=\lfloor(m-d-2) /(2 d-1)\rfloor$.

Proof. Assume $m<\min \{2 n, n+2 d-1\}$ and $\lambda_{d}^{T}\left(K_{m, n}\right)=m+d-1$. Let f be an $[m+d-1]-(d, 1)$-total labelling. By Theorem $8,1 \leqslant|I| \leqslant n-1$. Without loss of generality, we may assume that $\{d, m-1\} \subseteq Y_{j}$ for $1 \leqslant j \leqslant 2 n-m$. It follows that $2 d \leqslant f\left(y_{j}\right) \leqslant m-d-1$, and hence $m \geqslant 3 d+1$. This completes the proof for (1).

Since $2 d \leqslant f\left(y_{j}\right) \leqslant m-d-1$ for $1 \leqslant j \leqslant 2 n-m$, we have $\left|[d, m-1] \cap Y_{j}\right| \leqslant$ $m-3 d+1$. As $\left|Y_{j}\right|=n$, it follows that $\left|([0, d-1] \cup[m, m+d-1]) \cap Y_{j}\right| \geqslant$ $n-m+3 d-1$. Note that each label in $[0, d-1]$ is assigned to exactly $n-|I|$
edges, while each label in $[m, m+d-1]$ is assigned to exactly $|I|$ edges. We conclude that

$$
\begin{aligned}
(n-m+3 d-1)(2 n-m) & \leqslant \sum_{j=1}^{2 n-m}\left|([0, d-1] \cup[m, m+d-1]) \cap Y_{j}\right| \\
& \leqslant n d .
\end{aligned}
$$

This completes the proof for (2).
To prove (3), consider Y_{j} for $1 \leqslant j \leqslant 2 n-m$. Since $2 d \leqslant f\left(y_{j}\right) \leqslant m-d-1$ and $\left[f\left(y_{j}\right)\right]_{d} \cap Y_{j}=\emptyset$, we obtain that $n=\left|Y_{j}\right|=\left|[0, m+d-1] \cap Y_{j}\right| \leqslant$ $m+d-(2 d-1)=m-d+1$. Hence $m \geqslant n+d-1$. Suppose $m=n+d-1$. Then (2) implies $n \leqslant 2 d-2$. This is impossible since $m=n+d-1 \geqslant 3 d+1$ by (1).

It follows from (1) that the number α in (4) is positive and $\alpha(2 d-1)+1 \leqslant$ $m-d-1 \leqslant(\alpha+1)(2 d-1)$. For each $j \in[1,2 n-m]$, since $2 d \leqslant f\left(y_{j}\right) \leqslant m-d-1$ and $\left[f\left(y_{j}\right)\right]_{d} \cap Y_{j}=\emptyset$, the following statement holds: For each $s \in[1, \alpha]$, if $f\left(y_{j}\right) \in[s(2 d-1)+1,(s+1)(2 d-1)]$, then $s(2 d-1)+d \notin Y_{j}$. For each $i \in[1, \alpha]$, let $t_{i}=\mid\left\{j \mid j \in[1,2 n-m]\right.$ and $\left.f\left(y_{j}\right) \in[i(2 d-1)+1,(i+1)(2 d-1)]\right\} \mid$. Because $t_{1}+t_{2}+\ldots+t_{\alpha}=2 n-m$, there exists some $k \in[1, \alpha]$ such that $t_{k} \geq(2 n-m) / \alpha$. Therefore, $k(2 d-1)+d$ does not belong to at least $(2 n-m) / \alpha$ of the Y_{j} 's for $1 \leqslant j \leqslant 2 n-m$. Since the label $k(2 d-1)+d$ belongs to exactly n of the Y_{j} 's for $1 \leqslant j \leqslant m$, we conclude that $(2 n-m) / \alpha \leqslant m-n$, hence (4) follows.

The following is an immediate consequence of Theorem 9 and Theorem 10(3).
Corollary 11 If $m<n+d$, then $\lambda_{d}^{T}\left(K_{m, n}\right)=m+d$.
Now we are ready to give exact values of $\lambda_{d}^{T}\left(K_{m, n}\right)$ for $d=1,2,3$. The case for $d=1$ is completely determined by the total chromatic number of $K_{m, n}$ and the reader is referred to Theorem 3.2 in Yap [16] for a proof.

Theorem 12 Let $1 \leqslant n \leqslant m$. Then

$$
\lambda_{1}^{T}\left(K_{m, n}\right)=\chi^{\prime \prime}\left(K_{m, n}\right)-1=m+\delta_{m, n}
$$

where $\delta_{m, n}$ denotes the Kronecker delta, i.e., its value is 1 if $m=n$ and is 0 otherwise.

Theorem 13 Let $1 \leqslant n \leqslant m$. Then

$$
\lambda_{2}^{T}\left(K_{m, n}\right)= \begin{cases}m+2 & \text { if } m \leqslant n+1, \text { or } \\ & m=n+2 \text { and } n \geqslant 3 \\ m+1 & \text { otherwise }\end{cases}
$$

Proof. By Corollary 6, it suffices to consider the case for $m>n$. The results for $m \geqslant n+3$ follow from Theorem 8 . For $m=n+1$, the result follows from Corollary 11. Assume $m=n+2$. The cases for $n=1,2$ follow from Theorem 8 . The cases for $n=3,4$ follow from Theorem $10(1)$. The cases for $n=5,6$ follow from Theorem 10(4). All the remaining cases follow from Theorem 10(2).

Theorem 14 Let $1 \leqslant n \leqslant m$. Then

$$
\lambda_{3}^{T}\left(K_{m, n}\right)= \begin{cases}m+3 & \text { if } m \leqslant n+2 \text {, or } \\ & m=n+3 \text { and } n \geqslant 4, \text { or } \\ & m=n+4 \text { and } n=5,9,10,13,14,15 \\ m+2 & \text { otherwise. }\end{cases}
$$

Proof. By Corollary 6, it suffices to consider the case for $m>n$. The results for $m \leqslant n+2$ and $m \geqslant n+5$, respectively, follow from Corollary 11 and Theorem 8.

Assume $m=n+3$. The cases for $n=1,2,3$ follow from Theorem 8. The cases for $n=4,5,6$ follow from Theorem $10(1)$. The case for $n=7$ follows from Theorem 10(4). The remaining cases for $n \geqslant 8$ follow from Theorem 10(2).

Finally assume $m=n+4$. The cases for $n=1,2,3,4$ follow from Theorem 8 . The case for $n=5$ follows from Theorem 10(1). The cases for $n \geqslant 17$ follow from Theorem 10(2). The cases for $n=9,10,13,14,15$ follow from Theorem $10(4)$. In the appendix, we list $[n+6]-(3,1)$-total labellings obtained by ad hoc methods for each of the $K_{n+4, n}, n=6,7,8,11,12,16$.

We conclude this paper with the following problem whose answer is positive for $d=1,2,3$ from our results.

Problem. Under the assumption that $m<\min \{2 n, n+2 d-1\}$, are conditions (1) to (4) in Theorem 10 sufficient for $\lambda_{d}^{T}\left(K_{m, n}\right)=m+d-1$?

Acknowledgment. The authors would like to express their appreciation to Xuding Zhu for his comments on an early draft of this paper.

A Appendix

When n is one of the numbers $6,7,8,11,12$, or 16 , an $[n+6]$-(3, 1$)$-total labelling for $K_{n+4, n}$ is given below by a table. The notation used is as follows.

The label of the i-th row is assigned to the vertex $x_{i} \in X$.

The label of the j-th column is assigned to the vertex $y_{j} \in Y$.

The label at the (i, j) cell is assigned to the edge $x_{i} y_{j}$.

$K_{10,6}$	6	6	9	9	11	11	1	1	1	1
12	2	0	1	3	5	4	7	8	9	6
12	3	1	0	2	6	5	9	4	8	7
12	9	2	3	0	1	6	8	7	4	5
0	10	3	4	6	8	7	12	11	5	9
0	11	9	5	4	7	3	10	12	6	8
0	12	10	6	5	3	8	11	9	7	4

$K_{11,7}$	6	6	7	12	12	12	12	1	1	1	1
13	0	2	1	5	8	3	7	9	10	4	6
13	1	0	3	6	2	4	5	8	7	9	10
13	3	1	4	2	5	0	6	10	9	8	7
0	9	3	11	7	6	5	4	12	8	10	13
0	10	9	12	8	7	6	3	11	5	13	4
0	12	10	13	3	4	7	8	6	11	5	9
0	13	11	10	4	3	8	9	7	12	6	5

$K_{12,8}$	6	6	7	7	13	13	13	13	1	1	1	1
14	0	1	3	2	5	6	4	8	11	7	9	10
14	1	0	2	3	6	7	10	9	5	4	11	8
14	3	2	0	1	9	10	6	7	4	8	5	11
14	2	3	1	10	0	4	7	6	9	11	8	5
0	11	10	4	13	3	8	9	5	12	14	6	7
0	12	11	13	14	8	3	5	4	7	9	10	6
0	13	12	14	11	7	5	3	10	8	6	4	9
0	14	13	11	12	10	9	8	3	6	5	7	4

$K_{15,11}$	6	6	6	11	11	11	11	16	16	16	16	1	1	1	1
0	11	16	9	5	6	15	17	10	3	8	4	12	13	14	7
0	12	11	10	6	14	17	5	13	4	3	9	15	7	16	8
0	13	12	17	7	16	3	15	4	5	6	10	8	11	9	14
0	14	13	15	17	8	16	6	5	10	9	3	11	4	7	12
0	15	14	13	16	17	7	4	3	8	12	6	9	5	10	11
0	16	17	14	15	7	6	3	9	12	4	5	13	8	11	10
17	0	1	11	14	3	4	2	12	13	7	8	5	10	6	9
17	1	3	12	0	2	5	14	8	11	10	7	6	9	13	4
17	3	2	1	8	4	14	7	0	9	5	11	10	6	12	13
17	9	10	2	3	0	1	8	7	6	11	13	14	12	4	5
17	10	9	3	2	1	8	0	11	7	13	12	4	14	5	6

$K_{16,12}$	6	6	6	6	12	12	12	12	17	17	17	17	1	1	1	1
0	3	12	9	13	17	16	5	18	4	8	14	11	7	10	6	15
0	14	3	12	9	6	17	16	8	5	4	10	13	11	18	15	7
0	18	16	3	12	8	6	9	17	14	5	4	7	13	15	11	10
0	17	18	14	3	9	8	6	16	13	11	5	4	15	7	10	12
0	11	10	17	18	3	9	8	15	6	13	7	5	4	12	16	14
0	13	11	18	17	16	15	3	6	12	14	8	10	5	4	7	9
18	15	1	11	14	7	3	0	9	8	10	12	2	6	5	4	13
18	12	15	10	11	0	7	2	3	1	9	13	8	14	6	5	4
18	1	14	15	10	4	0	7	2	3	12	9	6	8	11	13	5
18	2	13	0	15	5	4	1	7	10	3	11	12	9	8	14	6
18	10	9	1	0	15	2	4	5	7	6	3	14	12	13	8	11
18	9	0	13	1	2	5	15	4	11	7	6	3	10	14	12	8

$K_{20,16}$	6	6	6	6	11	11	11	11	16	16	16	16	21	21	21	21	1	1	1	1
0	20	18	14	13	21	4	3	7	22	5	19	6	8	10	15	11	12	17	9	16
0	21	19	15	14	22	5	20	8	3	4	6	11	7	13	12	18	17	16	10	9
0	12	21	16	15	14	6	4	17	20	7	3	22	5	18	10	8	11	9	19	13
0	9	22	17	16	3	7	21	18	4	20	5	19	10	6	8	12	15	14	13	11
0	10	3	20	17	15	8	14	16	5	21	22	4	18	7	6	9	13	12	11	19
0	11	9	22	18	16	20	15	19	6	8	21	3	4	5	7	10	14	13	17	12
0	3	10	18	20	17	22	19	21	7	6	4	13	12	15	5	16	9	11	8	14
0	13	11	19	21	18	14	7	22	8	12	9	20	17	3	4	6	16	10	5	15
22	0	12	3	19	4	18	16	6	2	11	1	5	9	14	13	17	8	7	15	10
22	1	16	9	3	5	0	18	2	12	13	8	7	14	4	11	15	10	19	6	17
22	14	1	10	9	6	3	0	15	13	19	11	2	16	8	17	5	7	18	12	4
22	15	2	0	10	7	17	1	5	9	3	12	8	13	11	16	14	19	6	4	18
22	16	14	2	0	19	15	5	1	10	9	13	12	11	17	3	7	6	4	18	8
22	17	13	11	1	8	19	6	14	0	10	2	9	15	12	18	3	4	5	16	7
22	18	15	12	11	1	2	17	4	19	0	7	10	3	16	9	13	5	8	14	6
22	19	17	13	12	2	16	8	3	11	1	10	0	6	9	14	4	18	15	7	5

References

[1] F. Bazzaro, M. Montassier, A. Raspaud, (d, 1)-total labelling of planar graphs with large girth and high maximum degree, Discrete Math. 307 (2007) 21412151.
[2] M. Behzad, Graphs and Their Chromatic Numbers. Ph.D. Thesis, Michigan State University, 1965.
[3] O. V. Borodin, A. V. Kostochka, D. R. Woodall, List edge and list total colourings of multigraphs, J. Combin. Theory. Ser. B 71 (1997) 184-204.
[4] D. Chen, W. Wang, (2, 1)-total labelling of outerplanar graphs, Discrete Appl. Math. 155 (2007) 2585-2593.
[5] P. Erdős, A. L. Rubin, H. Taylor, Choosability in graphs, Congress. Numer. 26 (1980) 125-157.
[6] J. R. Griggs, R. K. Yeh, Labelling graphs with a condition at distance 2, SIAM J. Discrete Math. 5 (1992) 586-595.
[7] W. K. Hale, Frequency assignment: theory and applications, Proc. IEEE 68 (1980) 1497-1514.
[8] F. Havet, M.-L.Yu, (d,1)-total labelling of graphs, Technical Report 4650, INRIA, 2002.
[9] F. Havet, M.-L.Yu, ($p, 1$)-total labelling of graphs, Discrete Math. 308 (2008) 496-513.
[10] A. Kemnitz, J. Lehmann, [r, s, t]-colorings of stars, Congr. Numer. 185 (2007) 65-80.
[11] A. Kemnitz, M. Marangio, [r, s, t]-colorings of graphs, Discrete Math. 307 (2007) 199-207.
[12] A. Kemnitz, M. Marangio, P. Mihók, $[r, s, t]$-chromatic numbers and hereditary properties of graphs, Discrete Math. 307 (2007) 916-922.
[13] M. Montassier, A. Raspaud, ($d, 1$)-total labeling of graphs with a given maximum average degree, J. Graph Theory 51 (2006) 93-109.
[14] V. G. Vizing, Some unsolved problems in graph theory, (Russian) Uspehi Mat. Nauk 23 (1968) 117-134.
[15] M. A. Whittlesey, J. P. Georges, D. W. Mauro, On the λ-number of Q_{n} and related graphs, SIAM J. Discrete Math. 8 (1995) 499-506.
[16] H. P. Yap, Total Colourings of Graphs. Lecture Notes in Mathematics, Vol. 1623, Springer, Berlin, 1996.
[17] R. K. Yeh, A survey on labeling graphs with a condition at distance two, Discrete Math. 306 (2006) 1217-1231.

[^0]: * Corresponding author.

 Email addresses: makwlih@sinica.edu.tw (Ko-Wei Lih),
 dliu@calstatela.edu (Daphne Der-Fen Liu), wwf@zjnu.cn (Weifan Wang).
 ${ }^{1}$ Supported in part by the NSF under grant DMS 0302456.
 ${ }^{2}$ Supported in part by the NSFC under grant 10771197.

