On (d, 1)-Total Numbers of Graphs

Ko-Wei Lih *

Institute of Mathematics, Academia Sinica, Nankang, Taipei 11529, Taiwan

Daphne Der-Fen Liu¹

Department of Mathematics, California State University, Los Angeles, Los Angeles, CA 90032, USA

Weifan Wang²

Department of Mathematics, Zhejiang Normal University, Jinhua, Zhejiang 321004, China

Abstract

A (d, 1)-total labelling of a graph G assigns integers to the vertices and edges of G such that adjacent vertices receive distinct labels, adjacent edges receive distinct labels, and a vertex and its incident edges receive labels that differ in absolute value by at least d. The span of a (d, 1)-total labelling is the maximum difference between two labels. The (d, 1)-total number, denoted $\lambda_d^T(G)$, is defined to be the least span among all (d, 1)-total labellings of G. We prove new upper bounds for $\lambda_d^T(G)$, compute some $\lambda_d^T(K_{m,n})$ for complete bipartite graphs $K_{m,n}$, and completely determine all $\lambda_d^T(K_{m,n})$ for d = 1, 2, 3. We also propose a conjecture on an upper bound for $\lambda_d^T(G)$ in terms of the chromatic number and the chromatic index of G.

Key words: channel assignment, L(2, 1)-labelling, (d, 1)-total labelling, chromatic number, chromatic index

* Corresponding author.

Email addresses: makwlih@sinica.edu.tw (Ko-Wei Lih),

dliu@calstatela.edu (Daphne Der-Fen Liu), wwf@zjnu.cn (Weifan Wang).

 $^{^1\,}$ Supported in part by the NSF under grant DMS 0302456.

 $^{^2\,}$ Supported in part by the NSFC under grant 10771197.

1 Introduction

Let d be a positive integer and G(V, E) be a finite graph without loops or multiple edges. We always assume that G has at least one edge without explicitly saying so. A (d, 1)-total labelling of G is an integer-valued function f defined on the set $V(G) \cup E(G)$ such that

$$|f(x) - f(y)| \ge \begin{cases} 1 & \text{if vertices } x \text{ and } y \text{ are adjacent;} \\ 1 & \text{if edges } x \text{ and } y \text{ are adjacent;} \\ d & \text{if vertex } x \text{ and edge } y \text{ are incident.} \end{cases}$$

We may require |f(x) - f(y)|, for adjacent elements x and y, be greater than or equal to s, instead of 1, in the above defining inequality for some given positive integer s to get a more general notion of a (d, s)-total labelling; nevertheless we concentrate our attention only to the special case s = 1 in this paper. A (d, 1)-total labelling taking values in the set $\{0, 1, \ldots, k\}$ is called a [k]-(d, 1)total labelling. The span of a (d, 1)-total labelling is the maximum difference between two labels. The minimum span, i.e. the minimum k, among all [k]-(d, 1)-total labellings of G, denoted $\lambda_d^T(G)$, is called the (d, 1)-total number of G.

A (d, 1)-total labelling of G is a generalization of an L(2, 1)-labelling of the subdivision of G studied in Whittlesey, Georges, and Mauro [15]. The notion of an L(2, 1)-labelling was motivated by an interference avoidance problem, introduced in Hale [7], in the assignment of radio frequency bands to transmitters. An L(2, 1)-labelling of G assigns nonnegative integer labels to the vertices of G so that vertices at distance two receive distinct labels and adjacent vertices receive labels that differ in absolute value by at least 2. Griggs and Yeh [6] initiated a systematic study into L(2, 1)-labellings of graphs that has been intensively developed ever since. The reader is referred to Yeh [17] for a recent survey of results and generalizations of L(2, 1)-labellings. The subdivision G^S of a graph G is the graph obtained by inserting one new vertex to each of the edges of G. If we define the span of an L(2, 1)-labelling to be the maximum difference between two labels, then the minimum span among all L(2, 1)-labellings of G^S is precisely $\lambda_2^T(G)$.

Havet and Yu [8] first introduced the notion of a (d, 1)-total labelling and their results have published only recently in [9]. Let $\Delta(G)$ denote the maximum degree of G. Havet and Yu proposed the following conjecture.

(d, 1)-Total Labelling Conjecture. $\lambda_d^T(G) \leq \min\{\Delta(G) + 2d - 1, 2\Delta(G) + d - 1\}.$

In addition to [9], positive evidence to this conjecture has also been given in [1], [4], and [13]. Note that $\lambda_1^T(G) + 1$ is equal to the *total chromatic number* $\chi''(G)$ of the graph G and the (d, 1)-total labelling conjecture for the case d = 1 is equivalent to the well-known *Total Coloring Conjecture* proposed by Behzad [2] and independently by Vizing [14].

It should be pointed out that a (d, 1)-total labelling is a special case (r = s = 1)of an [r, s, d]-coloring introduced and studied in [10], [11], and [12]. The [1, 1, d]chromatic number $\chi_{1,1,d}(G)$ of a graph G defined there is exactly $\lambda_d^T(G) + 1$.

In Section 2, we will derive upper bounds for $\lambda_d^T(G)$. Based on these values, we propose an upper bound conjecture in terms of the chromatic number and the chromatic index of G.

In Section 3, we compute some values of $\lambda_d^T(K_{m,n})$ for complete bipartite graphs $K_{m,n}$ and completely determine all $\lambda_d^T(K_{m,n})$ for d = 1, 2, 3. These values give further support to the (d, 1)-total labelling conjecture.

2 Upper Bounds

We are going to present upper bounds for $\lambda_d^T(G)$ in terms of its maximum degree $\Delta(G)$, chromatic number $\chi(G)$, chromatic index $\chi'(G)$, and list chromatic index $\chi'_l(G)$. We will propose a conjecture on an upper bound of $\lambda_d^T(G)$ at the end of this section.

Let $\chi(G)$, or $\chi'(G)$, denote the smallest number of colors needed to color the vertices, respectively the edges, of G so that adjacent elements receive distinct colors. A vertex-coloring or an edge-coloring satisfying the above condition is said to be a *proper* vertex-coloring or edge-coloring. If each edge e of G is assigned a list L(e) of possible colors and G has a proper edge-coloring ϕ such that $\phi(e) \in L(e)$ for all $e \in E(G)$, then we say that G is L-edge-colorable. The graph G is said to be k-edge-choosable if it is L-edge-colorable for every assignment L satisfying |L(e)| = k for all $e \in E(G)$. Let $\chi'_l(G)$ denote the smallest k such that G is k-edge-choosable.

The following two lemmas were proved in Havet and Yu [9] and the case for d = 2 first appeared in Whittlesey, Georges, and Mauro [15].

Lemma 1 For any graph G, $\lambda_d^T(G) \leq \chi(G) + \chi'(G) + d - 2$.

Lemma 2 For any graph G, $\lambda_d^T(G) \leq 2\Delta(G) + d - 1$.

Throughout this paper, a proper vertex-coloring, or edge-coloring, using colors from the set $\{0, 1, \ldots, k-1\}$ is said to be a *k*-vertex-coloring, or *k*-edge-

coloring. For integers $a \leq b$, we use [a, b] to denote the set $\{a, a + 1, \ldots, b\}$. For integers a and d, the set [a - d + 1, a + d - 1] is denote by $[a]_d$.

Theorem 3 For any graph G, $\lambda_d^T(G) \leq \chi_l'(G) + 4d - 3$.

Proof. Since $\chi(G) \leq \Delta(G) + 1$, we can give a proper vertex-coloring f_1 for G using colors $0, 1, \ldots, \Delta(G)$. For each edge e = xy, we define the list

$$L(e) = [0, \chi'_{l}(G) + 4d - 3] \setminus ([f_{1}(x)]_{d} \cup [f_{1}(y)]_{d}).$$

As $|L(e)| \ge \chi'_l(G)$, there exists an *L*-coloring f_2 for the edges of *G*. Since $\chi'_l(G) \ge \chi'(G) \ge \Delta(G)$, we have $\chi'_l(G) + 4d - 3 \ge \Delta(G)$. Consequently, $f_1 \cup f_2$ forms a $[\chi'_l(G) + 4d - 3]$ -(d, 1)-total labelling of *G*.

Borodin, Kostochka, and Woodall [3] proved that $\chi'_l(G) \leq \lfloor \frac{3}{2}\Delta(G) \rfloor$ for a multigraph graph G. Hence, by Theorem 3, the following upper bound for $\lambda^T_d(G)$ emerges.

Theorem 4 For any graph G, $\lambda_d^T(G) \leq \lfloor \frac{3}{2}\Delta(G) \rfloor + 4d - 3$.

Note that, for fixed d and sufficient large $\Delta(G)$, the upper bound for $\lambda_d^T(G)$ in Theorem 4 is better than the one in Lemma 2. In the rest of this section, we shall improve the bounds of Lemmas 1 and 2.

Theorem 5 Let G be a graph with $\chi(G) = k$ and $\chi'(G) = k'$. If $k \ge 3d$, then $\lambda_d^T(G) \le s + k' - 1$, where s is equal to 4d - 2 when k = 3d or 3d + 1, and equal to $\lceil (k + 9d - 5)/3 \rceil$ when $k \ge 3d + 2$.

Proof. We choose a mapping $f : V(G) \cup E(G) \rightarrow [0, s + k' - 1]$ such that the restriction of f to V(G) is a k-vertex-coloring and the restriction of f to E(G) is a proper edge-coloring using colors in [s, s + k' - 1].

Let G' be the subgraph of G induced by the edges in $E' = \{e \in E(G) \mid f(e) \in [s, k+d-2]\}$. Then $\Delta(G') \leq k+d-s-1$. To any $e = xy \in E(G')$, we assign the list $L(e) = [0, k+d-2] \setminus ([f(x)]_d \cup [f(y)]_d)$. Then $|L(e)| \geq k-3d+1$. Since $\Delta(G') \leq k+d-s-1$, G' is a disjoint union of edges when k = 3d, and is a disjoint union of paths and even cycles when k = 3d + 1. It is well-known that $\chi'_l(G') \leq |L(e)|$ in these cases. When $k \geq 3d+2$, it follows from $s \geq (k+9d-5)/3$ that $3(k+d-s-1)/2 \leq k+3d+1$. Since $\chi'_l(G') \leq [3\Delta(G)/2] \leq 3(k+d-s-1)/2$, we have $\chi'_l(G') \leq |L(e)|$ again. Hence, there always exists an L-edge-coloring f' for G'. Re-labelling edges in G' by f' while keeping the rest of G unchanged, we get an [s+k'-1]-(d, 1)-total labelling for G.

By Theorem 5, the following conjecture holds for graphs with $\chi(G) \ge 3d$.

Conjecture 1 Let a graph G satisfy $\chi(G) > \max\{2, d\}$. Then

$$\lambda_d^T(G) \leqslant \chi(G) + \chi'(G) + d - 3.$$

The known values of $\lambda_d^T(K_n)$ for complete graphs K_n on *n* vertices that have been computed in [9] support the above conjecture. The following corollary also appeared in [9].

Corollary 6 Let G be a bipartite graph. Then $\Delta(G) + d - 1 \leq \lambda_d^T(G) \leq \Delta(G) + d$ and $\lambda_d^T(G) = \Delta(G) + d$ when $d \geq \Delta(G)$ or G is regular.

For a bipartite graph G, it is well-known that $\chi'(G) = \Delta(G)$. Hence, a consequence of Corollary 6 is $\lambda_d^T(G) = \Delta(G) + d = \chi(G) + \chi'(G) + d - 2$ for a bipartite regular graph G. This together with the fact $\lambda_4^T(K_4) = 9$ show that the assumption $\chi(G) > \max\{2, d\}$ in Conjecture 1 cannot be removed.

3 Complete Bipartite Graphs

The following can be easily derived when we examine the label of a vertex of maximum degree and the labels of its incident edges.

Lemma 7 (1) $\lambda_d^T(G) \ge \Delta(G) + d - 1.$

(2) If $\lambda_d^T(G) = \Delta(G) + d - 1$, then each vertex of maximum degree is labelled with 0 or $\Delta(G) + d - 1$ in any $[\Delta(G) + d - 1] - (d, 1)$ -total labelling.

Throughout this section, let $K_{m,n}$ $(m \ge n)$ denote the complete bipartite graph with parts $X = \{x_1, x_2, \ldots, x_n\}$ and $Y = \{y_1, y_2, \ldots, y_m\}$. By Corollary $6, m+d-1 \le \lambda_d^T(K_{m,n}) \le m+d$. When a function f is defined over the edges of $K_{m,n}$, we write f(i, j) for $f(x_i y_j)$. Furthermore, let $X_i = \{f(i, j) \mid 1 \le j \le m\}$ and $Y_j = \{f(i, j) \mid 1 \le i \le n\}$.

Theorem 8 The following statements are equivalent.

(1) $m \ge \min\{2n, n+2d-1\}$ and $m \ge n+d$.

(2) There exists an [m + d - 1]-(d, 1)-total labelling f for $K_{m,n}$ such that f(x) = 0 for all $x \in X$, or f(x) = m + d - 1 for all $x \in X$.

Proof. (1) \Rightarrow (2). We are going to construct an [m+d-1]-(d, 1)-total labelling f for $K_{m,n}$ such that f(x) = 0 for all $x \in X$.

First assume that $m \ge 2n$. Let ρ be the composition of the two cyclic permutations $(1 \ 2 \ \cdots \ n)$ and $(n \ + \ 1 \ n \ + \ 2 \ \cdots \ m)$ on the set [1, m]. Let $f(x_i) = 0$ for all $1 \le i \le n$, $f(y_j) = m + d - 1$ for $1 \le j \le n$, $f(y_j) = 1$ for $n + 1 \le j \le m$, and $f(i, j) = (d - 1) + \rho^{i-1}(j)$ for $1 \le i \le n$ and $1 \le j \le m$. Since $m \ge 2n$, adjacent edges are labelled with distinct labels. We see that $Y_j = [d, d+n-1]$ when $1 \le j \le n$ and $Y_j \subseteq [d+n, d+m-1]$ when $n < j \le m$. Since $1 \le d \le m - n$, the absolute difference between the label of any vertex and the label of any of its incident edge is at least d, hence f satisfies our requirements.

Next assume that $m \ge n+2d-1$. Let σ be the cyclic permutation $(1 \ 2 \ \cdots \ m)$ on the set [1, m]. For $1 \le i \le n$ and $1 \le j \le m$, let $f(x_i) = 0$, $f(y_j) = (d-1) + \sigma^{n-1+d}(j)$, and $f(i, j) = (d-1) + \sigma^{i-1}(j)$. Adjacent edges are obviously labelled with distinct labels. Since $m \ge n+2d-1$, we see that $|\sigma^{n-1+d}(j) - \sigma^{i-1}(j)| \ge d$ for $1 \le i \le n$ and $1 \le j \le m$, hence f satisfies our requirements.

 $(2) \Rightarrow (1)$. Assume there exists an [m+d-1]-(d, 1)-total labelling f for $K_{m,n}$ such that f(x) = 0 for all $x \in X$. (By symmetry, we only need to show this case.)

Since $f(x_i) = 0$ for all *i*, we have $f(i, j) \ge d$ and $X_i = [d, m+d-1]$ for all *i* and *j*. Without loss of generality, we may assume that $d \in Y_j$ for $1 \le j \le n$, and hence $f(y_j) \ge 2d$. Let t_j denote the largest number in Y_j . Then $t_j \ge n+d-1$.

Assume that $t_p > f(y_p)$ for some $p \in [1, n]$. Then $[f(y_p)]_d \subseteq [d, t_p]$ and $[f(y_p)]_d \cap Y_p = \emptyset$. Moreover, since $|[f(y_p)]_d| = 2d - 1$, $Y_p \in [d, t_p]$, and $|Y_p| = n$, it follows that $t_p - d + 1 \ge n + 2d - 1$. As $t_p \le m + d - 1$, we conclude that $m \ge n + 2d - 1 \ge n + d$.

Assume $t_j < f(y_j)$ for all $j \in [1, n]$. Then we have $t_j \leq f(y_j) - d \leq m - 1$, implying $n + d - 1 \leq m - 1$. Therefore, $m \geq n + d$. Moreover, it also follows that $Y_j \subseteq [d, m - 1]$ for $1 \leq j \leq n$. This implies that the edges that can be assigned labels from the set [m, m + d - 1] must be incident to y_j for some $j \in [n + 1, m]$. Hence, $nd = \sum_{j=n+1}^{m} |Y_j \cap [m, m + d - 1]| \leq (m - n)d$, implying $2n \leq m$.

By Theorem 8, to further investigate the values of m and n such that $\lambda_d^T(K_{m,n}) = m + d - 1$, it remains to study the following two possibilities.

Case 1. $m \ge \min\{2n, n+2d-1\}$ and m < n+d, or equivalently, $2n \le m < n+d$.

Case 2. $m < \min\{2n, n+2d-1\}.$

We shall deal with Cases 1 and 2 in Theorems 9 and 10, respectively. There is one more notation used in the proofs of Theorems 9 and 10. For any [m+d-1]-(d, 1)-total labelling f for $K_{m,n}$, by Lemma 7, each vertex $x_i \in X$ is labelled with either 0 or m + d - 1. Denote

$$I = \{i \mid f(x_i) = 0 \text{ and } 1 \leq i \leq n\}.$$

Then we have $X_i = [d, m+d-1]$ for each $i \in I$, while $X_i = [0, m-1]$ for each $i \notin I$.

Theorem 9 If $2n \leq m < n+d$, then $\lambda_d^T(K_{m,n}) = m+d$.

Proof. The assumption $2n \leq m < n+d$ implies that n < d and m < 2d. Suppose to the contrary that $\lambda_d^T(K_{m,n}) = m+d-1$. Let f be an [m+d-1]-(d, 1)-total labelling. By Theorem 8, $1 \leq |I| \leq n-1$. Since $d \in X_i$ for any $i \in I$, we have $d \in Y_j$ for some j. It implies that $2d \leq f(y_j) \leq m+d-2$ because $f(y_j) \notin \{0, m+d-1\}$, and hence $d \leq m-2$. It follows that $d \in X_i$ for any $i \notin I$. Now d belongs to all X_i 's. Without loss of generality, we may assume that $d \in Y_j$ for $1 \leq j \leq n$.

Pick $i_0 \in I$. So $X_{i_0} = [d, m + d - 1]$. Because all $y_j, 1 \leq j \leq n$, are adjacent to x_{i_0} , there exists $w \geq n + d - 1$ such that $w \in Y_{j_0}$ for some $j_0 \in [1, n]$. We know that $2d \leq f(y_{j_0}) \leq m + d - 2$. If $\alpha \in [m - 1, m + d - 1]$, then $|f(y_{j_0}) - \alpha| < d$ since m < 2d. It follows that $Y_{j_0} \cap [m - 1, m + d - 1] = \emptyset$ and $n + d - 1 \leq w \leq m - 2$, contradicting the assumption m < n + d.

Theorem 10 Suppose that $m < \min\{2n, n+2d-1\}$ and $\lambda_d^T(K_{m,n}) = m+d-1$. Then all the following statements hold.

- (1) $m \ge 3d + 1$.
- (2) $(n m + 3d 1)(2n m) \leq nd.$
- (3) $m \ge n + d$.

(4)
$$n/m \leq (\alpha + 1)/(\alpha + 2)$$
, where $\alpha = \lfloor (m - d - 2)/(2d - 1) \rfloor$.

Proof. Assume $m < \min\{2n, n+2d-1\}$ and $\lambda_d^T(K_{m,n}) = m+d-1$. Let f be an [m+d-1]-(d, 1)-total labelling. By Theorem 8, $1 \leq |I| \leq n-1$. Without loss of generality, we may assume that $\{d, m-1\} \subseteq Y_j$ for $1 \leq j \leq 2n-m$. It follows that $2d \leq f(y_j) \leq m-d-1$, and hence $m \geq 3d+1$. This completes the proof for (1).

Since $2d \leq f(y_j) \leq m-d-1$ for $1 \leq j \leq 2n-m$, we have $|[d,m-1] \cap Y_j| \leq m-3d+1$. As $|Y_j| = n$, it follows that $|([0,d-1] \cup [m,m+d-1]) \cap Y_j| \geq n-m+3d-1$. Note that each label in [0,d-1] is assigned to exactly n-|I|

edges, while each label in [m, m + d - 1] is assigned to exactly |I| edges. We conclude that

$$(n-m+3d-1)(2n-m) \leqslant \sum_{j=1}^{2n-m} |([0,d-1] \cup [m,m+d-1]) \cap Y_j| \\ \leqslant nd.$$

This completes the proof for (2).

To prove (3), consider Y_j for $1 \leq j \leq 2n - m$. Since $2d \leq f(y_j) \leq m - d - 1$ and $[f(y_j)]_d \cap Y_j = \emptyset$, we obtain that $n = |Y_j| = |[0, m + d - 1] \cap Y_j| \leq m + d - (2d - 1) = m - d + 1$. Hence $m \geq n + d - 1$. Suppose m = n + d - 1. Then (2) implies $n \leq 2d - 2$. This is impossible since $m = n + d - 1 \geq 3d + 1$ by (1).

It follows from (1) that the number α in (4) is positive and $\alpha(2d-1)+1 \leq m-d-1 \leq (\alpha+1)(2d-1)$. For each $j \in [1, 2n-m]$, since $2d \leq f(y_j) \leq m-d-1$ and $[f(y_j)]_d \cap Y_j = \emptyset$, the following statement holds: For each $s \in [1, \alpha]$, if $f(y_j) \in [s(2d-1)+1, (s+1)(2d-1)]$, then $s(2d-1)+d \notin Y_j$. For each $i \in [1, \alpha]$, let $t_i = |\{j \mid j \in [1, 2n-m] \text{ and } f(y_j) \in [i(2d-1)+1, (i+1)(2d-1)]\}|$. Because $t_1+t_2+\ldots+t_\alpha = 2n-m$, there exists some $k \in [1, \alpha]$ such that $t_k \geq (2n-m)/\alpha$. Therefore, k(2d-1)+d does not belong to at least $(2n-m)/\alpha$ of the Y_j 's for $1 \leq j \leq 2n-m$. Since the label k(2d-1)+d belongs to exactly n of the Y_j 's for $1 \leq j \leq m$, we conclude that $(2n-m)/\alpha \leq m-n$, hence (4) follows.

The following is an immediate consequence of Theorem 9 and Theorem 10(3).

Corollary 11 If m < n + d, then $\lambda_d^T(K_{m,n}) = m + d$.

Now we are ready to give exact values of $\lambda_d^T(K_{m,n})$ for d = 1, 2, 3. The case for d = 1 is completely determined by the total chromatic number of $K_{m,n}$ and the reader is referred to Theorem 3.2 in Yap [16] for a proof.

Theorem 12 Let $1 \leq n \leq m$. Then

$$\lambda_1^T(K_{m,n}) = \chi''(K_{m,n}) - 1 = m + \delta_{m,n},$$

where $\delta_{m,n}$ denotes the Kronecker delta, i.e., its value is 1 if m = n and is 0 otherwise.

Theorem 13 Let $1 \leq n \leq m$. Then

$$\lambda_2^T(K_{m,n}) = \begin{cases} m+2 & \text{if } m \leq n+1, \text{ or} \\ m=n+2 \text{ and } n \geq 3; \\ m+1 & \text{otherwise.} \end{cases}$$

Proof. By Corollary 6, it suffices to consider the case for m > n. The results for $m \ge n+3$ follow from Theorem 8. For m = n+1, the result follows from Corollary 11. Assume m = n+2. The cases for n = 1, 2 follow from Theorem 8. The cases for n = 3, 4 follow from Theorem 10(1). The cases for n = 5, 6 follow from Theorem 10(4). All the remaining cases follow from Theorem 10(2).

Theorem 14 Let $1 \leq n \leq m$. Then

$$\lambda_{3}^{T}(K_{m,n}) = \begin{cases} m+3 & \text{if } m \leq n+2, \text{ or} \\ m=n+3 \text{ and } n \geq 4, \text{ or} \\ m=n+4 \text{ and } n=5,9,10,13,14,15; \\ m+2 & \text{otherwise.} \end{cases}$$

Proof. By Corollary 6, it suffices to consider the case for m > n. The results for $m \leq n+2$ and $m \geq n+5$, respectively, follow from Corollary 11 and Theorem 8.

Assume m = n+3. The cases for n = 1, 2, 3 follow from Theorem 8. The cases for n = 4, 5, 6 follow from Theorem 10(1). The case for n = 7 follows from Theorem 10(4). The remaining cases for $n \ge 8$ follow from Theorem 10(2).

Finally assume m = n + 4. The cases for n = 1, 2, 3, 4 follow from Theorem 8. The case for n = 5 follows from Theorem 10(1). The cases for $n \ge 17$ follow from Theorem 10(2). The cases for n = 9, 10, 13, 14, 15 follow from Theorem 10(4). In the appendix, we list [n+6]-(3, 1)-total labellings obtained by *ad hoc* methods for each of the $K_{n+4,n}$, n = 6, 7, 8, 11, 12, 16.

We conclude this paper with the following problem whose answer is positive for d = 1, 2, 3 from our results.

Problem. Under the assumption that $m < \min\{2n, n+2d-1\}$, are conditions (1) to (4) in Theorem 10 sufficient for $\lambda_d^T(K_{m,n}) = m + d - 1$?

Acknowledgment. The authors would like to express their appreciation to Xuding Zhu for his comments on an early draft of this paper.

A Appendix

When n is one of the numbers 6, 7, 8, 11, 12, or 16, an [n + 6]-(3, 1)-total labelling for $K_{n+4,n}$ is given below by a table. The notation used is as follows.

The label of the *i*-th row is assigned to the vertex $x_i \in X$.

The label of the *j*-th column is assigned to the vertex $y_j \in Y$.

The label at the (i, j) cell is assigned to the edge $x_i y_j$.

$K_{10,6}$	6	6	9	9	11	11	1	1	1	1
12	2	0	1	3	5	4	7	8	9	6
12	3	1	0	2	6	5	9	4	8	7
12	9	2	3	0	1	6	8	7	4	5
0	10	3	4	6	8	7	12	11	5	9
0	11	9	5	4	7	3	10	12	6	8
0	12	10	6	5	3	8	11	9	7	4

$K_{11,7}$	6	6	7	12	12	12	12	1	1	1	1
13	0	2	1	5	8	3	7	9	10	4	6
13	1	0	3	6	2	4	5	8	7	9	10
13	3	1	4	2	5	0	6	10	9	8	7
0	9	3	11	7	6	5	4	12	8	10	13
0	10	9	12	8	7	6	3	11	5	13	4
0	12	10	13	3	4	7	8	6	11	5	9
0	13	11	10	4	3	8	9	7	12	6	5

$K_{12,8}$	6	6	7	7	13	13	13	13	1	1	1	1
14	0	1	3	2	5	6	4	8	11	7	9	10
14	1	0	2	3	6	7	10	9	5	4	11	8
14	3	2	0	1	9	10	6	7	4	8	5	11
14	2	3	1	10	0	4	7	6	9	11	8	5
0	11	10	4	13	3	8	9	5	12	14	6	7
0	12	11	13	14	8	3	5	4	7	9	10	6
0	13	12	14	11	7	5	3	10	8	6	4	9
0	14	13	11	12	10	9	8	3	6	5	7	4

$K_{15,11}$	6	6	6	11	11	11	11	16	16	16	16	1	1	1	1
0	11	16	9	5	6	15	17	10	3	8	4	12	13	14	7
0	12	11	10	6	14	17	5	13	4	3	9	15	7	16	8
0	13	12	17	7	16	3	15	4	5	6	10	8	11	9	14
0	14	13	15	17	8	16	6	5	10	9	3	11	4	7	12
0	15	14	13	16	17	7	4	3	8	12	6	9	5	10	11
0	16	17	14	15	7	6	3	9	12	4	5	13	8	11	10
17	0	1	11	14	3	4	2	12	13	7	8	5	10	6	9
17	1	3	12	0	2	5	14	8	11	10	7	6	9	13	4
17	3	2	1	8	4	14	7	0	9	5	11	10	6	12	13
17	9	10	2	3	0	1	8	7	6	11	13	14	12	4	5
17	10	9	3	2	1	8	0	11	7	13	12	4	14	5	6

$K_{16,12}$	6	6	6	6	12	12	12	12	17	17	17	17	1	1	1	1				
0	3	12	9	13	17	16	5	18	4	8	14	11	7	10	6	15				
0	14	3	12	9	6	17	16	8	5	4	10	13	11	18	15	7				
0	18	16	3	12	8	6	9	17	14	5	4	7	13	15	11	10				
0	17	18	14	3	9	8	6	16	13	11	5	4	15	7	10	12				
0	11	10	17	18	3	9	8	15	6	13	7	5	4	12	16	14				
0	13	11	18	17	16	15	3	6	12	14	8	10	5	4	7	9				
18	15	1	11	14	7	3	0	9	8	10	12	2	6	5	4	13				
18	12	15	10	11	0	7	2	3	1	9	13	8	14	6	5	4				
18	1	14	15	10	4	0	7	2	3	12	9	6	8	11	13	5				
18	2	13	0	15	5	4	1	7	10	3	11	12	9	8	14	6				
18	10	9	1	0	15	2	4	5	7	6	3	14	12	13	8	11				
18	9	0	13	1	2	5	15	4	11	7	6	3	10	14	12	8				
$K_{20,16}$	6	6	6	6	11	11	11	11	16	16	16	16	21	21	21	21	1	1	1	1
0	20	18	14	13	21	4	3	7	22	5	19	6	8	10	15	11	12	17	9	16
0	21	19	15	14	22	5	20	8	3	4	6	11	7	13	12	18	17	16	10	9
0	12	21	16	15	14	6	4	17	20	7	3	22	5	18	10	8	11	9	19	13
0	9	22	17	16	3	7	21	18	4	20	5	19	10	6	8	12	15	14	13	11
0	10	3	20	17	15	8	14	16	5	21	22	4	18	7	6	9	13	12	11	19
0	11	9	22	18	16	20	15	19	6	8	21	3	4	5	7	10	14	13	17	12
0	3	10	18	20	17	22	19	21	7	6	4	13	12	15	5	16	9	11	8	14
0	13	11	19	21	18	14	7	22	8	12	9	20	17	3	4	6	16	10	5	15
22	0	12	3	19	4	18	16	6	2	11	1	5	9	14	13	17	8	7	15	10
22	1	16	9	3	5	0	18	2	12	13	8	7	14	4	11	15	10	19	6	17
22	14	1	10	9	6	3	0	15	13	19	11	2	16	8	17	5	7	18	12	4
22	15	2	0	10	7	17	1	5	9	3	12	8	13	11	16	14	19	6	4	18
22	16	14	2	0	19	15	5	1	10	9	13	12	11	17	3	7	6	4	18	8
22	17	13	11	1	8	19	6	14	0	10	2	9	15	12	18	3	4	5	16	7
22	18	15	12	11	1	2	17	4	19	0	7	10	3	16	9	13	5	8	14	6
22	19	17	13	12	2	16	8	3	11	1	10	0	6	9	14	4	18	15	7	5

References

- F. Bazzaro, M. Montassier, A. Raspaud, (d, 1)-total labelling of planar graphs with large girth and high maximum degree, *Discrete Math.* 307 (2007) 2141– 2151.
- [2] M. Behzad, Graphs and Their Chromatic Numbers. Ph.D. Thesis, Michigan State University, 1965.
- [3] O. V. Borodin, A. V. Kostochka, D. R. Woodall, List edge and list total colourings of multigraphs, J. Combin. Theory. Ser. B 71 (1997) 184–204.
- [4] D. Chen, W. Wang, (2, 1)-total labelling of outerplanar graphs, *Discrete Appl. Math.* 155 (2007) 2585–2593.
- [5] P. Erdős, A. L. Rubin, H. Taylor, Choosability in graphs, *Congress. Numer.* 26 (1980) 125–157.
- [6] J. R. Griggs, R. K. Yeh, Labelling graphs with a condition at distance 2, SIAM J. Discrete Math. 5 (1992) 586–595.

- [7] W. K. Hale, Frequency assignment: theory and applications, *Proc. IEEE* 68 (1980) 1497–1514.
- [8] F. Havet, M.-L.Yu, (d, 1)-total labelling of graphs, *Technical Report* 4650, INRIA, 2002.
- [9] F. Havet, M.-L.Yu, (p, 1)-total labelling of graphs, *Discrete Math.* 308 (2008) 496–513.
- [10] A. Kemnitz, J. Lehmann, [r, s, t]-colorings of stars, Congr. Numer. 185 (2007) 65–80.
- [11] A. Kemnitz, M. Marangio, [r, s, t]-colorings of graphs, *Discrete Math.* 307 (2007) 199–207.
- [12] A. Kemnitz, M. Marangio, P. Mihók, [r, s, t]-chromatic numbers and hereditary properties of graphs, *Discrete Math.* 307 (2007) 916–922.
- [13] M. Montassier, A. Raspaud, (d, 1)-total labeling of graphs with a given maximum average degree, J. Graph Theory 51 (2006) 93–109.
- [14] V. G. Vizing, Some unsolved problems in graph theory, (Russian) Uspehi Mat. Nauk 23 (1968) 117–134.
- [15] M. A. Whittlesey, J. P. Georges, D. W. Mauro, On the λ -number of Q_n and related graphs, *SIAM J. Discrete Math.* 8 (1995) 499–506.
- [16] H. P. Yap, Total Colourings of Graphs. Lecture Notes in Mathematics, Vol. 1623, Springer, Berlin, 1996.
- [17] R. K. Yeh, A survey on labeling graphs with a condition at distance two, Discrete Math. 306 (2006) 1217–1231.