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There is a remarkable amount of mathematics to be discovered just by factoring poly-
nomials of the form xn − 1 with n ∈ N. To get started, consider

x − 1 = x − 1

x2 − 1 = (x + 1)(x − 1)

x3 − 1 = (x2 + x + 1)(x − 1)

x4 − 1 = (x2 + 1)(x + 1)(x − 1)

x5 − 1 = (x4 + x3 + x2 + x + 1)(x − 1)

x6 − 1 = (x2 − x + 1)(x2 + x + 1)(x + 1)(x − 1).

(1)

The polynomials appearing in such factorizations are called cyclotomic polyno-
mials. The first few cyclotomic polynomials are

�1(x) = x − 1 �2(x) = x + 1 �3(x) = x2 + x + 1

�4(x) = x2 + 1 �5(x) = x4 + x3 + x2 + x + 1

�6(x) = x2 − x + 1 �7(x) = x6 + x5 + x4 + x3 + x2 + x + 1

�8(x) = x4 + 1 �9(x) = x6 + x3 + 1

�10(x) = x4 − x3 + x2 − x + 1

�11(x) = x10 + x9 + x8 + x7 + x6 + x5 + x4 + x3 + x2 + x + 1

�12(x) = x4 − x2 + 1.

Before giving the official definition of cyclotomic polynomials, we point out some
noteworthy patterns that are already apparent among the cyclotomic polynomials
listed.

1. It seems that the factors of xn − 1 are exactly those cyclotomic polynomials whose
index divides n. For example,

x6 − 1 = �6(x)�3(x)�2(x)�1(x).

2. Looking at �2(x), �3(x), �5(x), �7(x) and �11(x), it appears that, for prime p,

�p(x) = x p−1 + x p−2 + · · · + x2 + x + 1.

3. We have �4(x) = �2(x2), �8(x) = �4(x2) = �2(x4), �9(x) = �3(x3), and
�12(x) = �6(x2). (But also �6(x) �= �3(x2) and �6(x) �= �2(x3).)
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4. We have �6(x) = �3(−x) and �10(x) = �5(−x). (But also �4(x) �= �2(−x) and
�12(x) �= �6(−x).)

5. The coefficients of �10(x) put in decreasing degree order are

1, −1, 1, −1, 1.

Reversing the order of this list leaves it unchanged. Polynomials with this symmetry
are called reciprocal, and, except for �1(x), all of the cyclotomic polynomials
listed have this property.

6. All coefficients of these cyclotomic polynomials are 0, 1 or −1.

Are these observations about the first 12 cyclotomic polynomials special cases of
theorems about all cyclotomic polynomials? As we will see the answer is yes in most
cases. Only the last observation (6) about the coefficients of cyclotomic polynomials is
wrong in general. It is easy to imagine that the first mathematicians to study these poly-
nomials thought that the coefficients of all cyclotomic polynomials are in {−1, 0, 1}
because that is indeed the case for �n(x) with n < 105. Remarkably,

�105(x) = x48 + x47 + x46 − x43 − x42 − 2x41 − x40 − x39

+ x36 + x35 + x34 + x33 + x32 + x31 − x28 − x26

− x24 − x22 − x20 + x17 + x16 + x15 + x14 + x13

+ x12 − x9 − x8 − 2x7 − x6 − x5 + x2 + x + 1

(2)

has terms with coefficient −2. This property of �105 was noted by Migotti [15] in
1883 who also proved that, if p and q are distinct odd primes, then the coefficients of
�pq are in {−1, 0, 1} (see Theorem 15). This situation has motivated a large amount
of research into the coefficients of cyclotomic polynomials.

Basic properties

To define and to understand cyclotomic polynomials, we need to discuss their zeros.
And for that, a bit of group theory—at least the language of group theory—is useful.

The set of nonzero complex numbers, C×, forms a group under multiplication. For
ω ∈ C×, the set 〈ω〉 = {ωm | m ∈ Z} is the subgroup generated by ω. The number
of elements in this subgroup is called the order of ω, which we write as ord ω. (The
usual notation for the order of an element in a group, |ω|, conflicts with the notation
for the norm (or absolute value) of complex numbers.)

The connection to the zeros of polynomials of the form xn − 1 is provided by the
following group theoretic lemma whose proof can be found in any abstract algebra
textbook, for example, [8] and [9].

Lemma 1. A complex number ω ∈ C× has finite order if and only if ωk = 1 for some
k ∈ N. If ord ω = n is finite, then

1. n is the smallest natural number such that ωn = 1,

2. 〈ω〉 = {1, ω, ω2, . . . , ωn−1},
3. for all m ∈ Z, ωm = 1 if and only if n divides m.

There are a lot of easy and useful consequences of this lemma.

1. If ω ∈ C× has finite order, then ωord ω = 1.
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2. For any n ∈ N, the zeros of xn − 1 are exactly the complex numbers whose orders
divide n.

3. Every complex number of order n ∈ N is a zero of xn − 1. So, for example, to find
all complex numbers of order 4, we need only look among the zeros of x4 − 1 =
(x2 + 1)(x + 1)(x − 1), namely, 1, −1, i and −i . It is easy to check that i and −i
are the only complex numbers of order 4, whereas 1 and −1 have orders 1 and 2.

There is other language for describing the complex numbers of interest. For any
natural number n, a complex number ω is called an nth root of unity if ω is a zero of
xn − 1, that is, if ωn = 1, and ω is called a primitive nth root of unity if ord ω = n,
equivalently, if ω is a zero of xn − 1 but is not a zero of xm − 1 for any m < n.

The key property of the complex numbers is that xn − 1 has exactly n complex
zeros, and these can be expressed trigonometrically using De Moivre’s theorem.

Lemma 2. [9, p. 18] Let n ∈ N and ωn = e2π i/n ∈ C×. Then xn − 1 has n simple
zeros in C×, namely,

ωm
n = e2π im/n = cos(2πm/n) + i sin(2πm/n)

for 0 ≤ m < n. Consequently, 〈ωn〉 is the set of zeros of xn − 1 and ord ωn = n.

One useful consequence of Lemma 2 is that if two monic polynomials divide xn − 1
for some n ∈ N, then they are identical if and only if they have the same zeros.

The following lemma provides a formula for the order of ωm in the case that ord ω

is known.

Lemma 3. Suppose that ω ∈ C× has finite order. Then, for all m ∈ N,

m ord ωm = lcm(m, ord ω).

Proof. Lemma 1(3) is used four times in this proof! Let ord ω = n. Because
ωm ord ωm = (ωm)ord ωm = 1, n divides m ord ωm . This implies that m ord ωm is a com-
mon multiple of n and m and so lcm(m, n) divides m ord ωm .

On the other hand, because both m and n divide lcm(m, n), it follows that
lcm(m, n)/m ∈ N as well as (ωm)lcm(m,n)/m = ωlcm(m,n) = 1. Consequently, ord ωm

divides lcm(m, n)/m and, equivalently, m ord ωm divides lcm(m, n).

Lemma 3 makes it possible to be precise about which complex numbers have finite
order.

Lemma 4. A complex number has order n ∈ N if and only if it has the form ωm
n =

e2π im/n with 0 ≤ m < n and gcd(m, n) = 1.

Proof. If a complex number has order n, then, by Lemma 1, it is a zero of xn − 1,
and, by Lemma 2, has the form ωm

n for some m such that 0 ≤ m < n. Because of
Lemma 3, ωm

n has order n if and only if lcm(m, n) = mn, which is equivalent to
gcd(m, n) = 1.

For example, 1, 5, 7, and 11 are the only natural numbers that are less than 12 and
relatively prime to 12, and so ω12, ω5

12, ω7
12, and ω11

12 are the complex numbers of order
12. In general, the number of complex numbers of order n is given by Euler’s phi
function [5] defined by

ϕ(n) = ∣∣{m ∈ N | m < n and gcd(m, n) = 1}∣∣.
We should mention that all the above results are special cases of theorems that hold

in any group. See, for example, [9, Section 6] and [8, Section 2.3].
We are finally ready to define cyclotomic polynomials.
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Definition 5. For n ∈ N, the nth cyclotomic polynomial is

�n(x) =
∏

ord ω=n

(x − ω).

Thus, �n(x) is the monic polynomial whose zeros are the complex numbers of order n.

For example, since 1 is the only the complex number of order 1 and −1 is the only the
complex number of order 2 we have

�1(x) = x − 1 �2(x) = x + 1.

Also, since ±i are all the complex numbers of order 4 we have

�4(x) = (x − i)(x + i) = x2 + 1.

By Lemma 1(3), the zeros of x4 − 1 are exactly those complex numbers whose
orders divide 4. Hence

x4 − 1 =
∏

(ord ω)|4
(x − ω)

=
( ∏

ord ω=1

(x − ω)

)( ∏
ord ω=2

(x − ω)

)( ∏
ord ω=4

(x − ω)

)

= �1(x)�2(x)�4(x).

The argument made for n = 4 generalizes very easily to yield the following lemma.

Lemma 6. For n ∈ N, xn − 1 = ∏
d|n �d(x).

Proof. Since xn − 1 has exactly n simple zeros (Lemma 2), to prove the claim it
suffices to check that the polynomials on the left and right of the equal sign have the
same zeros. But that is exactly what Lemma 1(3) says.

Lemma 6 makes calculating cyclotomic polynomials much easier. For example,
�1(x) = x − 1 and x5 − 1 = �5(x)�1(x), so,

�5(x) = (x5 − 1)/(x − 1) = x4 + x3 + x2 + x + 1.

To calculate �10(x), we use

x10 − 1 = �10(x)�5(x)�2(x)�1(x).

Dividing x10 − 1 by

�5(x)�2(x)�1(x) = (x4 + x3 + x2 + x + 1)(x + 1)(x − 1) = x6 + x5 − x − 1

we get �10(x) = x4 − x3 + x2 − x + 1. Note that �10(x) = �5(−x), a relationship
that we generalize in Lemma 11.

The fact that all cyclotomic polynomials have integer coefficients is not at all obvi-
ous from the definition and needs a proof:

Lemma 7. For all n ∈ N, �n(x) ∈ Z[x].

Proof. We prove the claim by induction on n ∈ N. Since �1(x) = x − 1 ∈ Z[x]
the claim is true for n = 1.
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Now suppose n > 1. By Lemma 6,

xn − 1 =
∏
d|n

�d(x) = �n(x)g(x),

where g(x) is the product of all the cyclotomic polynomials �d(x) with d a proper
positive factor of n. By the induction hypothesis, �d(x) ∈ Z[x] for all such cyclo-
tomic polynomials and hence g(x) ∈ Z[x]. Since cyclotomic polynomials are monic
by construction, and products of monic polynomials are monic, g(x) is also monic.

Then �n(x) is the quotient of xn − 1 ∈ Z[x] by the monic polynomial g(x) ∈ Z[x],
so �n(x) is also in Z[x].

A similar induction proof, left to the reader, shows that �n(0) = 1 for all n > 1.

Lemma 8. For m, n ∈ N,

�n(xm) =
∏
d∈D

�d(x),

where D = {d ∈ N | lcm(m, d) = mn}.
Proof. Because �n(x) divides xn − 1, we see that �n(xm) divides xmn − 1. And,

if d ∈ D, then d divides lcm(m, d) = mn and so, by Lemma 6, the right side of the
equation also divides xmn − 1. The zeros of xmn − 1 are distinct (Lemma 2), so to
prove the claim it suffices to confirm that both sides of the equation have the same
zeros. For this we just need Lemma 3:

A number ω ∈ C is a zero of �n(xm) if and only if ord ωm = n, if and only
if lcm(m, ord ω) = mn, if and only if ord ω ∈ D, if and only if ω is a zero of∏

d∈D �d(x).

For example, if m = 2 and n = 3, then

D = {d ∈ N | lcm(2, d) = 6} = {3, 6}
and so �3(x2) = �6(x)�3(x).

The condition lcm(m, d) = mn in the definition of D is rather obscure, so to make
further use of Lemma 8, we derive a simpler description of D. (See [5] for the relevant
facts on greatest common divisors and least common multiples.)

Suppose that d ∈ D, that is, lcm(m, d) = mn. Set k = m/ gcd(m, d) so, in par-
ticular, k|m. Because of the identity gcd(a, b) lcm(a, b) = ab for all a, b ∈ N, we
get n gcd(d, m) = d and dk = mn. In addition, because of the identity a gcd(b, c) =
gcd(ab, ac) for all a, b, c ∈ N, we have

d gcd(n, k) = gcd(dn, dk) = gcd(dn, mn) = n gcd(d, m) = d

and so gcd(n, k) = 1.
Thus, if d ∈ D, then d = mn/k for some k ∈ N such that k|m and gcd(n, k) = 1.

The converse of this statement can be proved similarly giving

D =
{mn

k
| k ∈ N and k|m and gcd(n, k) = 1

}
. (3)

Lemma 9. If every prime divisor of m ∈ N is also a divisor of n ∈ N, then �mn(x) =
�n(xm).

Proof. We use Lemma 8 with D as given by (3). If d ∈ D, then d = mn/k for some
k ∈ N such that k|m and gcd(n, k) = 1. If p is a prime divisor of k, then, because k|m,
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p divides m, and then, by assumption, p divides n. But then p divides gcd(n, k),
contradicting gcd(n, k) = 1.

Thus, k ∈ N has no prime divisors, k = 1 and d = mn, D = {mn} and �n(xm) =
�mn(x).

This result enables us to calculate many new cyclotomic polynomials. For example,
since 400 = 40 · 10 and every prime that divides 40 divides 10, we have

�400(x) = �10(x40) = x160 − x120 + x80 − x40 + 1.

Note that �400(x) and �10(x) have the same coefficients.

Corollary 10. Let n be the product of the prime numbers that divide m ∈ N. Then
�m(x) = �n(xm/n) and, in particular, �m(x) and �n(x) have the same coefficients.

Proof. Since every prime that divides m/n divides n, this follows directly from
Lemma 9.

The main consequence of this corollary is that, for discussion of the coefficients of
cyclotomic polynomials, we need only consider �n(x) when n is a product of distinct
prime numbers.

Lemma 11. If n ∈ N is odd, then �2n(x) = �n(−x).

Proof. From Lemma 8, we find �n(x2) = �2n(x)�n(x). Replacing x by −x in this
equation gives

�2n(x)�n(x) = �2n(−x)�n(−x). (4)

Since �n(x2) divides x2n − 1, it has only simple zeros. So to prove the claim it suffices
to match the zeros on both sides of (4).

If �n(ω) = 0, then ord ω = n so, in particular, ωn = 1. Since n is odd, (−ω)n = −1
and so −ω does not have order n. This means that −ω must be a zero of �2n(x) and
have order 2n.

Similarly, if �2n(ω) = 0, then ωn �= 1 and (ωn)2 = 1 and so ωn = −1. Conse-
quently, (−ω)n = 1 and so −ω does not have order 2n. This means that −ω has order
n and is a zero of �n(x).

Cyclotomic polynomials have the property that their coefficients are the same
when read backward as forward. Such polynomials are called reciprocal polynomials.
Specifically, if f (x) is a polynomial of degree m, then xm f (1/x) is called the reverse
of f , and f is a reciprocal polynomial if it is equal to its reverse, that is, if

f (x) = xm f (1/x). (5)

It is not hard to see that the reverse of f is the polynomial f with its coefficients in
reverse order. For example, if f (x) = x4 + 2x3 + 3x2 + 4x + 5, then

x4 f (1/x) = x4
[
(1/x)4 + 2(1/x)3 + 3(1/x)2 + 4(1/x) + 5

]
= 1 + 2x + 3x2 + 4x3 + 5x4

= 5x4 + 4x3 + 3x2 + 2x + 1.

So a polynomial is reciprocal if and only if the sequence of its coefficients is symmet-
ric with respect to reversal of order. Because of this property, these polynomials are
sometimes called palindromic.
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Lemma 12. If n > 1, then �n(x) is a reciprocal polynomial.

Proof. Directly from the definition, if ω ∈ C×, then 〈ω〉 = 〈ω−1〉 and so ord ω = n
if and only if ord ω−1 = n. This means that the function ω �→ ω−1 is a permutation of
the set of zeros of �n(x). Thus, xm�n(1/x), with m = deg �n(x), has the same set of
zeros as �n(x). The leading coefficient of xm�n(1/x) is the constant term of �n(x)

which is 1 for n > 1 (see comment after Lemma 7). Thus, xm�n(1/x) = �n(x) for all
n > 1.

One of the most important properties of cyclotomic polynomials is that they are
irreducible over Q. This means that they do not factor into lower-degree polynomials
with rational coefficients. Proofs of this fact and its consequences are to be found in
many algebra textbooks (which is why this article is focused on the coefficients). See,
for example, [8, Section 13.6] and [17].

The main result

We are now in a position to prove that the coefficients of �n(x) are in {−1, 0, 1} for all
n < 105. To start, we need some formulas for cyclotomic polynomials whose indices
contain two or fewer primes.

Lemma 13. Let p and q be distinct prime numbers.

1. �p(x) = x p−1 + x p−2 + · · · + x + 1

2. �q(x p) = �pq(x) �q(x)

3. (x pq − 1) �pq(x) = �q(x p) �p(xq) (x − 1).

Proof. These equations could be obtained from Lemma 8, but it is just as easy to
derive them from �1(x) = x − 1 and

x p − 1 = �p(x)�1(x) xq − 1 = �q(x)�1(x)

x pq − 1 = �pq(x)�p(x)�q(x)�1(x),

which are obtained from Lemma 6.

1. �p(x) = (x p − 1)/(x − 1) = x p−1 + x p−2 + · · · + x + 1.

2. As well as the expression for x pq − 1 above, we have

x pq − 1 = (x p)q − 1 = �q(x p)�1(x p) = �q(x p)(x p − 1)

= �q(x p)�p(x)�1(x).

Cancellation from the two expressions for x pq − 1 gives �q(x p) = �pq(x) �q(x).

3. This follows from �q(x p) = �pq(x) �q(x), �p(xq) = �pq(x) �p(x) and the
above expression for x pq − 1.

We note for future reference that, from (2) or (3) of this lemma, the degree of �pq(x)

is pq − p − q + 1 = (p − 1)(q − 1) and is strictly less than pq.
The following lemma is really a weak version of the Chinese remainder theorem [5,

Theorem 4.8].

Lemma 14. If p and q are distinct primes, then the coefficients of �q(x p) �p(xq) are
in {0, 1}.
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Proof. From Lemma 13(1), we get

�q(x p) �p(xq) = (
1 + x p + · · · + x (q−1)p

)(
1 + xq + · · · + x (p−1)q

) =
∑

0≤m<q
0≤n<p

xmp+nq .

To complete the proof, it suffices to show that each of the pq terms in this sum has
distinct degree. Suppose, to the contrary, that pm + qn = pm ′ + qn′ with 0 ≤ m <

m ′ < q. Then p(m − m ′) = q(n′ − n), and, because p and q are distinct primes, q
divides m − m ′. But 0 < m − m ′ < q, so this is not possible.

Theorem 15. If p and q are distinct primes, then the coefficients of �pq(x) are
in {−1, 0, 1}.

Proof. From Lemma 13(3), we have

(x pq − 1) �pq(x) = �q(x p) �p(xq) (x − 1). (6)

Consider the left side of this equation. Since the degree of �pq is less than pq, all
nonzero terms of x pq�pq(x) have greater degree than the nonzero terms of �pq(x).
Hence, the coefficients of (x pq − 1) �pq(x) are, up to sign, simply the coefficients
of �pq .

To complete the proof, it suffices to show that the coefficients on the right side of
(6) are in {−1, 0, 1}. From Lemma 14, the coefficients of x�q(x p) �p(xq) are in {0, 1}
and the coefficients of −�q(x p) �p(xq) are in {0, −1}. Hence, the coefficients of the
sum of these two polynomials, namely �q(x p) �p(xq) (x − 1), are in {−1, 0, 1}, as
claimed.

For another proof, see [13].
It is now easy to see that �105(x) is the cyclotomic polynomial of least possible

index whose coefficients may not be in {−1, 0, 1}.
Theorem 16. If n ∈ N has at most two odd prime divisors, then the coefficients of
�n(x) are in {−1, 0, 1}.

Proof. We consider several cases:

1. If n = p is prime, then, by Lemma 13(1),

�n(x) = �p(x) = x p−1 + x p−2 + · · · + x + 1.

2. If n = pq for primes p and q, then Theorem 15 applies.

3. If n = 2pq for odd primes p and q, then, by Lemma 11, �n(x) = �2(pq)(x) =
�pq(−x) and Theorem 15 applies again.

Thus, for all these cases, and, by Corollary 10, for all n that have at most two distinct
odd prime factors, the coefficients of �n(x) are in {−1, 0, 1}.

The smallest n ∈ N for which the argument of Theorem 16 fails is the the smallest
number that has three distinct odd prime factors, namely n = 3 · 5 · 7 = 105. After n =
105, the next few numbers that have three or more odd prime factors are 3 · 5 · 11 =
165, 3 · 5 · 13 = 195, 2 · 3 · 5 · 7 = 210, 3 · 7 · 11 = 231, 3 · 5 · 17 = 255, 3 · 7 · 13 =
273, and 3 · 5 · 19 = 285. Except for �231(x), all of the corresponding cyclotomic
polynomials have coefficients that are not in {−1, 0, 1}.
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Other results

Cyclotomic polynomials of the form �pqr (x) with p, q and r odd primes are called
ternary. The coefficients of these polynomials continue to be the subject of much
research. To discuss this, suppose that p < q < r and let A(n) be the largest coef-
ficient of �n(x) in absolute value. So, for example, A(105) = 2. Then already in
1895, Bang [3] proved that A(pqr) ≤ p − 1. In 1968, Beiter [4] conjectured that
A(pqr) ≤ (p + 1)/2 and proved this bound for p = 3 and p = 5. Much later, it
was noticed that A(17 · 29 · 41) = 10 whereas, with p = 17, (p + 1)/2 = 9, and so
Beiter’s conjecture is false. In 2009, Gallot and Moree [11] proposed a corrected Beiter
conjecture, A(pqr) ≤ 2p/3, that has now been proven by Zhao and Zhang [18].

In another direction, G. Bachman [2] showed that there are infinitely many ternary
cyclotomic polynomials �pqr (x) for which A(pqr) = 1. The smallest example of this
is �231(x) = �3·7·11(x). See also [12].

A recent discovery, due to Gallot and Moree [10], is that neighboring coefficients
of ternary cyclotomic polynomials differ by at most one. This can be seen already in
�105(x) (2) whose coefficients, when put in degree order, are

1,1, 1, 0, 0, −1, −1, −2, −1, −1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, −1, 0, −1, 0, −1,

0, −1, 0, −1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, −1, −1, −2, −1, −1, 0, 0, 1, 1, 1.

In particular, −2 in this list is preceded and followed by −1. See also [6, 7].
What about cyclotomic polynomials involving four or more primes? In 1931,

I. Schur (see [14, 16]) showed that there is, in general, no bound on the size of the
coefficients of cyclotomic polynomials, essentially because there is no bound on the
number of prime numbers. If the goal is to find cyclotomic polynomials with large
coefficients, then the obvious candidates are polynomials whose indices are products
of many distinct odd primes.

For example, for the product of the first nine odd primes, we get [1]

A(3 · 5 · 7 · 11 · 13 · 17 · 19 · 23 · 29) = 2 888 582 082 500 892 851.

Another product of nine odd primes is

N = 13 162 764 615 = 3 · 5 · 7 · 11 · 13 · 19 · 29 · 37 · 43

and

A(N ) = 5 465 808 676 670 557 863 536 977 958 031 695 430 428 633.

The degree of �N (x) is 4 389 396 480, so it is easy to imagine the scale of the com-
putation needed to find A(N ). Calculating A(n) when n is a product of 10 distinct
primes is still out of the reach of modern computers. For these computational results
and much more, see [1].
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6. B. Bzdȩga, Bounds on ternary cyclotomic coefficients, Acta Arith. 144 (2010) 5–16.



188 MATHEMATICS MAGAZINE
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