Nim, Wythoff and beyond - let's play!

S. Heubach ${ }^{1} \quad$ M. Dufour ${ }^{2}$
${ }^{1}$ Dept. of Mathematics, California State University Los Angeles
${ }^{2}$ Dept. of Mathematics, University of Quebec, Montreal
April 29, 2011
Mathematics Colloquium, CSU Long Beach

Nim and Wythoff

- Nim: Select one of the n stacks, take at least one token

- Wythoff: Take any number of tokens from one stack OR select the same number of tokens from both stacks

How to win????

Question: For a given starting position (= heights of the stacks) in a game, can we determine whether Player I or Player II has a winning strategy, that is, can make moves in such a way that s/he will win, no matter how the other player plays? (Last player to move wins)

Goal: Determine the set of losing positions, that is, all positions that result in a loss for the player playing from that position.

Smaller Goal: Say something about the structure of the losing positions.

Combinatorial Games

Definition

An impartial combinatorial game has the following properties:

- each player has the same moves available at each point in the game (as opposed to chess, where there are white and black pieces).
- no randomness (dice, spinners) is involved and each player has complete information about the game and the potential moves

Analyzing Nim and Wythoff

Definition

A position in the game is denoted by $\mathbf{p}=\left(p_{1}, p_{2}, \ldots, p_{n}\right)$, where $p_{i} \geq 0$ denotes the number of tokens in stack i. A position that can be reached from the current position by a legal move is called an option. The directed graph which has the positions as the nodes and an arrow between a position and its options is called the game graph.

We do not distinguish between a position and any of its rearrangements. We will use the position that is ordered in decreasing order as the representative.

Options of position (3,2) in Nim and Wythoff

$(3,2) \leadsto$
$(3,2) \leadsto$

Additional moves for Wythoff
$(3,2) \sim$

Options of position (3,2) in Nim and Wythoff

$(3,2) \quad(2,2),(1,2),(0,2)$
$(3,2) \sim$

Additional moves for Wythoff
$(3,2) \sim$

Options of position (3,2) in Nim and Wythoff

$$
(3,2) \quad \sim(2,2),(1,2),(0,2)
$$

$(3,2) \sim(3,1),(3,0)$
Additional moves for Wythoff
$(3,2) \sim$

Options of position (3,2) in Nim and Wythoff

$$
(3,2) \quad \sim(2,2),(1,2),(0,2)
$$

$(3,2) \sim(3,1),(3,0)$

Additional moves for Wythoff

$$
(3,2) \quad(2,1),(1,0)
$$

Options of position $(3,2)$ in Nim and Wythoff

$$
\begin{aligned}
& (3,2) \leadsto(2,2),(1,2),(0,2) \\
& (3,2) \leadsto(3,1),(3,0)
\end{aligned}
$$

Additional moves for Wythoff

$$
(3,2) \quad(2,1),(1,0)
$$

Overall

$$
\begin{aligned}
& (3,2) \quad \leadsto(3,1),(3,0),(2,2),(2,1),(2,0) \text { for Nim } \\
& (3,2) \quad \leadsto(3,1),(3,0),(2,2),(2,1),(2,0),(1,0) \text { for Wythoff }
\end{aligned}
$$

Game graph for position $(3,2)$ for Nim

$(3,2)$

Game graph for position $(3,2)$ for Nim

Game graph for position $(3,2)$ for Nim

Game graph for position $(3,2)$ for Nim

Game graph for position $(3,2)$ for Wythoff

Impartial Games

Definition

A position is a \mathcal{P} position for the player about to make a move if the $\mathcal{P r}$ revious player can force a win (that is, the player about to make a move is in a losing position). The position is a \mathcal{N} position if the \mathcal{N} ext player (the player about to make a move) can force a win.

For impartial games, there are only two outcome classes for any position, namely winning position (\mathcal{N} position) or losing position (\mathcal{P} position). The set of losing positions is denoted by \mathcal{L}.

Recursive labeling

To find out whether Player I has a winning strategy, we label the nodes of the game graph recursively as follows:

- Sinks of the game graph are always losing (\mathcal{P}) positions.

Recursive labeling

To find out whether Player I has a winning strategy, we label the nodes of the game graph recursively as follows:

- Sinks of the game graph are always losing (\mathcal{P}) positions.

Next we select any position (node) whose options (offsprings) are all labeled. There are two cases:

Recursive labeling

To find out whether Player I has a winning strategy, we label the nodes of the game graph recursively as follows:

- Sinks of the game graph are always losing (\mathcal{P}) positions.

Next we select any position (node) whose options (offsprings) are all labeled. There are two cases:

- The position has at least one option that is a losing (\mathcal{P}) position

Recursive labeling

To find out whether Player I has a winning strategy, we label the nodes of the game graph recursively as follows:

- Sinks of the game graph are always losing (\mathcal{P}) positions.

Next we select any position (node) whose options (offsprings) are all labeled. There are two cases:

- The position has at least one option that is a losing (\mathcal{P}) position
- All options of the position are winning (\mathcal{N}) positions

Recursive labeling

To find out whether Player I has a winning strategy, we label the nodes of the game graph recursively as follows:

- Sinks of the game graph are always losing (\mathcal{P}) positions.

Next we select any position (node) whose options (offsprings) are all labeled. There are two cases:

- The position has at least one option that is a losing (\mathcal{P}) position \Rightarrow winning position and should be labeled \mathcal{N}
- All options of the position are winning (\mathcal{N}) positions

Recursive labeling

To find out whether Player I has a winning strategy, we label the nodes of the game graph recursively as follows:

- Sinks of the game graph are always losing (\mathcal{P}) positions.

Next we select any position (node) whose options (offsprings) are all labeled. There are two cases:

- The position has at least one option that is a losing (\mathcal{P}) position \Rightarrow winning position and should be labeled \mathcal{N}
- All options of the position are winning (\mathcal{N}) positions \Rightarrow losing position and should be labeled \mathcal{P}

Recursive labeling

To find out whether Player I has a winning strategy, we label the nodes of the game graph recursively as follows:

- Sinks of the game graph are always losing (\mathcal{P}) positions.

Next we select any position (node) whose options (offsprings) are all labeled. There are two cases:

- The position has at least one option that is a $\operatorname{losing}(\mathcal{P})$ position \Rightarrow winning position and should be labeled \mathcal{N}
- All options of the position are winning (\mathcal{N}) positions \Rightarrow losing position and should be labeled \mathcal{P}
The label of the starting position of the game then tells whether Player I (\mathcal{N}) or Player II (\mathcal{P}) has a winning strategy.

Is $(3,2)$ winning or losing for Nim ?

Is $(3,2)$ winning or losing for Nim ?

Is $(3,2)$ winning or losing for Nim ?

Is $(3,2)$ winning or losing for Nim ?

Is $(3,2)$ winning or losing for Nim ?

Is $(3,2)$ winning or losing for Nim ?

Is $(3,2)$ winning or losing for Nim ?

Is $(3,2)$ winning or losing for Wythoff ?

Is $(3,2)$ winning or losing for Wythoff ?

Take home lesson

- There is no legal move from a losing position to another losing position
- There is a recursive way to determine whether a position is losing or winning
- One can define a recursive function, the Grundy function, whose value is zero for a losing position, and positive for a winning position.
- Using a computer program, one can then obtain losing positions and guess a pattern for the losing positions.

An important tool

Theorem

Suppose the positions of a finite impartial game can be partitioned into mutually exclusive sets A and B with the properties:
I. every option of a position in A is in B;
II. every position in B has at least one option in A; and
III. the final positions are in A.

Then $A=\mathcal{L}$ and $B=\mathcal{W}$.

Proof strategy

- Obtain a candidate set S for the set of losing positions \mathcal{L}
- Show that any move from a position $\mathbf{p} \in S$ leads to a position $\mathbf{p}^{\prime} \notin S$ (I)
- Show that for every position $\mathbf{p} \notin S$, there is a move that leads to a position $\mathbf{p}^{\prime} \in S$ (II)

Often (as is the case for Nim and Wythoff), $(0,0, \ldots, 0)$ is the only final position and it is easy to see that (III) is satisfied.

How to win in Nim

Definition

The digital sum $a \oplus b \oplus \cdots \oplus k$ of of integers a, b, \ldots, k is obtained by translating the values into their binary representation and then adding them without carry-over.

How to win in Nim

Definition

The digital sum $a \oplus b \oplus \cdots \oplus k$ of of integers a, b, \ldots, k is obtained by translating the values into their binary representation and then adding them without carry-over.

Example

The digital sum $12 \oplus 13 \oplus 7$ equals 6 :

12	1	1	0	0
13	1	1	0	1
7		1	1	1
	0	1	1	0

How to win in Nim

Theorem

For the game of Nim, the set of losing positions is given by $\mathcal{L}=\left\{\left(p_{1}, p_{2}, \ldots, p_{n}\right) \mid p_{1} \oplus p_{2} \oplus \cdots \oplus p_{n}=0\right\}$.

How to win in Wythoff

Let $\varphi=\frac{1+\sqrt{5}}{2}$. Then the set of losing positions is given by

$$
\mathcal{L}=\{(\lfloor n \cdot \varphi\rfloor,\lfloor n \cdot \varphi\rfloor+n) \mid n \geq 0\}
$$

Elements $\left(a_{n}, b_{n}\right) \in \mathcal{L}$ can be created recursively as follows:

- For a_{n}, find he smallest positive integer not yet used for a_{i} and b_{i}, $i<n$.
- $b_{n}=a_{n}+n$.

n	0	1	2	3	4	5
a_{n}						
b_{n}						

How to win in Wythoff

Let $\varphi=\frac{1+\sqrt{5}}{2}$. Then the set of losing positions is given by

$$
\mathcal{L}=\{(\lfloor n \cdot \varphi\rfloor,\lfloor n \cdot \varphi\rfloor+n) \mid n \geq 0\}
$$

Elements $\left(a_{n}, b_{n}\right) \in \mathcal{L}$ can be created recursively as follows:

- For a_{n}, find he smallest positive integer not yet used for a_{i} and b_{i}, $i<n$.
- $b_{n}=a_{n}+n$.

n	0	1	2	3	4	5
a_{n}	0					
b_{n}	0					

How to win in Wythoff

Let $\varphi=\frac{1+\sqrt{5}}{2}$. Then the set of losing positions is given by

$$
\mathcal{L}=\{(\lfloor n \cdot \varphi\rfloor,\lfloor n \cdot \varphi\rfloor+n) \mid n \geq 0\}
$$

Elements $\left(a_{n}, b_{n}\right) \in \mathcal{L}$ can be created recursively as follows:

- For a_{n}, find he smallest positive integer not yet used for a_{i} and b_{i}, $i<n$.
- $b_{n}=a_{n}+n$.

n	0	1	2	3	4	5
a_{n}	0	1				
b_{n}	0					

How to win in Wythoff

Let $\varphi=\frac{1+\sqrt{5}}{2}$. Then the set of losing positions is given by

$$
\mathcal{L}=\{(\lfloor n \cdot \varphi\rfloor,\lfloor n \cdot \varphi\rfloor+n) \mid n \geq 0\}
$$

Elements $\left(a_{n}, b_{n}\right) \in \mathcal{L}$ can be created recursively as follows:

- For a_{n}, find he smallest positive integer not yet used for a_{i} and b_{i}, $i<n$.
- $b_{n}=a_{n}+n$.

n	0	1	2	3	4	5
a_{n}	0	1				
b_{n}	0	2				

How to win in Wythoff

Let $\varphi=\frac{1+\sqrt{5}}{2}$. Then the set of losing positions is given by

$$
\mathcal{L}=\{(\lfloor n \cdot \varphi\rfloor,\lfloor n \cdot \varphi\rfloor+n) \mid n \geq 0\}
$$

Elements $\left(a_{n}, b_{n}\right) \in \mathcal{L}$ can be created recursively as follows:

- For a_{n}, find he smallest positive integer not yet used for a_{i} and b_{i}, $i<n$.
- $b_{n}=a_{n}+n$.

n	0	1	2	3	4	5
a_{n}	0	1	3			
b_{n}	0	2				

How to win in Wythoff

Let $\varphi=\frac{1+\sqrt{5}}{2}$. Then the set of losing positions is given by

$$
\mathcal{L}=\{(\lfloor n \cdot \varphi\rfloor,\lfloor n \cdot \varphi\rfloor+n) \mid n \geq 0\}
$$

Elements $\left(a_{n}, b_{n}\right) \in \mathcal{L}$ can be created recursively as follows:

- For a_{n}, find he smallest positive integer not yet used for a_{i} and b_{i}, $i<n$.
- $b_{n}=a_{n}+n$.

n	0	1	2	3	4	5
a_{n}	0	1	3			
b_{n}	0	2	5			

How to win in Wythoff

Let $\varphi=\frac{1+\sqrt{5}}{2}$. Then the set of losing positions is given by

$$
\mathcal{L}=\{(\lfloor n \cdot \varphi\rfloor,\lfloor n \cdot \varphi\rfloor+n) \mid n \geq 0\}
$$

Elements $\left(a_{n}, b_{n}\right) \in \mathcal{L}$ can be created recursively as follows:

- For a_{n}, find he smallest positive integer not yet used for a_{i} and b_{i}, $i<n$.
- $b_{n}=a_{n}+n$.

n	0	1	2	3	4	5
a_{n}	0	1	3	4	6	8
b_{n}	0	2	5	7	10	13

Theorem

For the game of Wythoff, for any given position (a, b) there is exactly one losing position of each of the forms $(a, y),(x, b),(z, z+(b-a))$ for some $x \geq 0, y \geq 0$, and $z \geq 0$.

This structural result can be visualized as follows:

Theorem

For the game of Wythoff, for any given position (a, b) there is exactly one losing position of each of the forms $(a, y),(x, b),(z, z+(b-a))$ for some $x \geq 0, y \geq 0$, and $z \geq 0$.

This structural result can be visualized as follows:

Theorem

For the game of Wythoff, for any given position (a, b) there is exactly one losing position of each of the forms $(a, y),(x, b),(z, z+(b-a))$ for some $x \geq 0, y \geq 0$, and $z \geq 0$.

This structural result can be visualized as follows:

Theorem

For the game of Wythoff, for any given position (a, b) there is exactly one losing position of each of the forms $(a, y),(x, b),(z, z+(b-a))$ for some $x \geq 0, y \geq 0$, and $z \geq 0$.

This structural result can be visualized as follows:

Theorem

For the game of Wythoff, for any given position (a, b) there is exactly one losing position of each of the forms $(a, y),(x, b),(z, z+(b-a))$ for some $x \geq 0, y \geq 0$, and $z \geq 0$.

This structural result can be visualized as follows:

Theorem

For the game of Wythoff, for any given position (a, b) there is exactly one losing position of each of the forms $(a, y),(x, b),(z, z+(b-a))$ for some $x \geq 0, y \geq 0$, and $z \geq 0$.

This structural result can be visualized as follows:

Theorem

For the game of Wythoff, for any given position (a, b) there is exactly one losing position of each of the forms $(a, y),(x, b),(z, z+(b-a))$ for some $x \geq 0, y \geq 0$, and $z \geq 0$.

This structural result can be visualized as follows:

Theorem

For the game of Wythoff, for any given position (a, b) there is exactly one losing position of each of the forms $(a, y),(x, b),(z, z+(b-a))$ for some $x \geq 0, y \geq 0$, and $z \geq 0$.

This structural result can be visualized as follows: $(a, b)=(6,5)$

Theorem

For the game of Wythoff, for any given position (a, b) there is exactly one losing position of each of the forms $(a, y),(x, b),(z, z+(b-a))$ for some $x \geq 0, y \geq 0$, and $z \geq 0$.

This structural result can be visualized as follows: $(a, b)=(6,5)$

Generalization of Wythoff to n stacks

> Wythoff: Take any number of tokens from one stack OR select the same number of tokens from both stacks

Generalization: Take any number of tokens from one stack OR

Generalization of Wythoff to n stacks

Wythoff: Take any number of tokens from one stack OR select the same number of tokens from both stacks

Generalization: Take any number of tokens from one stack OR

- take the same number of tokens from ALL stacks

Generalization of Wythoff to n stacks

Wythoff: Take any number of tokens from one stack OR select the same number of tokens from both stacks

Generalization: Take any number of tokens from one stack OR

- take the same number of tokens from ALL stacks
- take the same number of tokens from any TWO stacks

Generalization of Wythoff to n stacks

Wythoff: Take any number of tokens from one stack OR select the same number of tokens from both stacks

Generalization: Take any number of tokens from one stack OR

- take the same number of tokens from ALL stacks
- take the same number of tokens from any TWO stacks
- take the same number of tokens from any non-empty SUBSET of stacks

Generalized Wythoff on n stacks

Let $B \subseteq \mathcal{P}(\{1,2,3, \ldots, n\})$ with the following conditions:

1. $\varnothing \notin B$
2. $\{i\} \in B$ for $i=1, \ldots, n$.

A legal move in generalized Wythoff $\mathcal{G} \mathcal{W}_{n}(B)$ on n stacks induced by B consists of:

- Choose a set $A \in B$
- Remove the same number of tokens from each stack whose index is in A

The first player who cannot move loses.

Examples

- Nim: Select one of the n stacks, take at least one token

- Wythoff: Either take any number of tokens from one stack OR select the same number of tokens from both stacks

Examples

- Nim: Select one of the n stacks, take at least one token

$$
B=\{\{1\},\{2\}, \ldots,\{n\}\}
$$

- Wythoff: Either take any number of tokens from one stack OR select the same number of tokens from both stacks

Examples

- Nim: Select one of the n stacks, take at least one token

$$
B=\{\{1\},\{2\}, \ldots,\{n\}\}
$$

- Wythoff: Either take any number of tokens from one stack OR select the same number of tokens from both stacks

$$
B=\{\{1\},\{2\},\{1,2\}\}
$$

$$
\vec{e}_{i}=i^{\text {th }} \text { unit vector; } \vec{e}_{A}=\sum_{i \in A} \vec{e}_{i}
$$

Conjecture

In the game of generalized Wythoff $\mathcal{G} \mathcal{W}_{n}(B)$, for any position
$\vec{p}=\left(p_{1}, p_{2}, \ldots, p_{n}\right)$ and any $A=\left\{i_{1}, i_{2}, \ldots, i_{k}\right\} \in B$, there is a unique losing position of the form $\vec{p}+m \cdot \vec{e}_{A}$, where
$m \geq-\min _{i \in A}\left\{p_{i}\right\}$.

Theorem

The conjecture is true for $|A| \leq 2$, that is, for any given position we can find a losing position for which only one or two of the stack heights are changed.

Example

$\mathcal{G} \mathcal{W}_{3}(\{\{1\},\{2\},\{3\},\{1,2\},\{1,3\},\{2,3\}\})$ - three stacks, with play on either a single or a pair of stacks. $\vec{p}=(11,17,20)$

| A | $\tilde{p} \in \mathcal{L}$ | $=\vec{p}+m \cdot \vec{e}_{A}$ | |
| :---: | :---: | :---: | :---: | :---: |
| $\{1\}$ | $(26,17,20)$ | $=(11,17,20)+15 \cdot(1,0,0)$ | |
| $\{2\}$ | $(11,31,20)$ | $=(11,17,20)+14 \cdot(0,1,0)$ | |
| $\{3\}$ | $(11,17,36)$ | $=(11,17,20)+16 \cdot(0,0,1)$ | |
| $\{1,2\}$ | $(19,25,20)$ | $=(11,17,20)+8 \cdot(1,1,0)$ | |
| $\{1,3\}$ | $(1,17,10)$ | $=(11,17,20)$ | $-10 \cdot(1,0,1)$ |
| $\{2,3\}$ | $(11,35,38)$ | $=(11,17,20)+18 \cdot(0,1,1)$ | |

Example

$$
\begin{gathered}
\left.B_{1}=\{\{1\},\{2\},\{3\},\{1,2\},\{1,3\},\{2,3\}\}\right) ; B_{2}=B_{1} \cup\{1,2,3\} \\
\vec{p}=(11,17,20)
\end{gathered}
$$

A	\tilde{p}_{1}	\tilde{p}_{2}
$\{1\}$	$(26,17,20)$	$(40,17,20)$
$\{2\}$	$(11,31,20)$	$(11,1,20)$
$\{3\}$	$(11,17,36)$	$(11,17,27)$
$\{1,2\}$	$(19,25,20)$	$(7,13,20)$
$\{1,3\}$	$(1,17,10)$	$(8,17,17)$
$\{2,3\}$	$(11,35,38)$	$(11,12,15)$
$\{1,2,3\}$	-	$(15,21,24)$

Proof for $|A|=1$.

To show: For any position $\left(p_{1}, p_{2}, \ldots, p_{n}\right)$ there exists a unique position $\left(x, p_{2}, \ldots, p_{n}\right) \in \mathcal{L}$.

Uniqueness: Assume there are at least two positions of this form, $\tilde{p}_{1}=\left(x, p_{2}, \ldots, p_{n}\right)$ and $\tilde{p}_{2}=\left(y, p_{2}, \ldots, p_{n}\right)$, both in \mathcal{L}, with $x>y$. Then there exists a legal move from a losing position to a losing position (which is not possible) by taking $x-y$ tokens from the first stack of $\tilde{p}_{1}=\left(x, p_{2}, \ldots, p_{n}\right)$. This is an allowed move as B always contains the singletons.

Proof for $|A|=1$ continued.

Existence: Assume all positions of the form $\mathbf{p}=\left(x, p_{2}, \ldots, p_{n}\right)$ are winning positions. Upper bound on the number of moves from \mathbf{p} :

- $2^{n}-1$ ways to choose the stacks to play on
- $\max _{i=2 \ldots n} p_{i}$ different choices for number of tokens
- Let $M=\left(2^{n}-1\right)\left(\max _{i=2 \ldots n} p_{i}\right)$.

Now consider the $M+1$ positions

$$
\begin{gathered}
\left(0, p_{2}, \ldots, p_{n}\right) \\
\left(1, p_{2}, \ldots, p_{n}\right) \\
\vdots \\
\left(M, p_{2}, \ldots, p_{n}\right)
\end{gathered}
$$

Proof for $|A|=1$ continued.

$\left(i, p_{2}, \ldots, p_{n}\right) \in \mathcal{W}$ implies that there is at least one move $\mathbf{t}_{\mathbf{i}}$ from $\left(i, p_{2}, \ldots, p_{n}\right)$ to a losing position $\mathbf{q}_{\mathbf{i}}$.

$$
\begin{gathered}
\left(0, p_{2}, \ldots, p_{n}\right)+\mathbf{t}_{\mathbf{0}}=\mathbf{q}_{\mathbf{0}} \in \mathcal{L} \\
\left(1, p_{2}, \ldots, p_{n}\right)+\mathbf{t}_{\mathbf{1}}=\mathbf{q}_{\mathbf{1}} \in \mathcal{L} \\
\vdots \\
\left(M, p_{2}, \ldots, p_{n}\right)+\mathbf{t}_{\mathbf{M}}=\mathbf{q}_{\mathbf{M}} \in \mathcal{L}
\end{gathered}
$$

Proof for $|A|=1$ continued.

By the pigeon hole principle, there must be a repeated move, say \mathbf{t}, yielding

$$
\begin{aligned}
& \mathbf{q}_{i}=\left(i, p_{2}, \ldots, p_{n}\right)-\mathbf{t}=\left(i-t_{1}, p_{2}-t_{2}, \ldots, p_{n}-t_{n}\right) \in \mathcal{L} \\
& \mathbf{q}_{j}=\left(j, p_{2}, \ldots, p_{n}\right)-\mathbf{t}=\left(j-t_{1}, p_{2}-t_{2}, \ldots, p_{n}-t_{n}\right) \in \mathcal{L}
\end{aligned}
$$

But we already saw that this is not possible, and so there must be a losing position of the form $\left(x, p_{2}, \ldots, p_{n}\right)$. The proof easily applies to any set $A=\{i\}$.

Note: What we have proved is that from any position we can "see" a losing position in any direction parallel to one of the axes of \mathbb{R}^{n}.

Proof for $|A|=2$

- Proof is much more complicated
- We define the notion of a Wythoff set (a set that generalizes the properties of the set of losing positions constructed recursively for Wythoff)
- Uses a theorem about the interplay between the cardinalities of a sequence of two increasing sets and their accumulated sizes (= sums of their respective elements)
- Does not yet seem to generalize to $|A|>2$.

Thank You!

Slides available from

http://www.calstatela.edu/faculty/sheubac

References and Further Reading I

∇
Elwyn R. Berlekamp, John H. Conway and Richard K. Guy. Winning Ways for Your Mathematical Plays, Vol $1 \& 2$. Academic Press, London, 1982.
© Michael H. Albert, Richard J. Nowakowski, and David Wolfe. Lessons in Play. AK Peters, 2007.Blass, Uri and A. S. Fraenkel. The Sprague-Grundy function for Wythoff's game, Theoret. Comput. Sci., Vol 75, No 3 (1990), pp 311-333.Duchêne, Eric, A. S. Fraenkel, Richard J. Nowakowski, and Michel Rigo. Extensions and restrictions of Wythoff's game preserving its \mathcal{P} positions, J. Combin. Theory Ser. A, Vol. 117, No 5 (2010) pp 545-567.

References and Further Reading II

目 Fraenkel, Aviezri S. Euclid and Wythoff games, Discrete Math. Vol 304, No 1-3 (2005) pp 65-68.

目 Fraenkel, A. S. Wythoff games, continued fractions, cedar trees and Fibonacci searches, Theoret. Comput. Sci., Vol 29, No 1-2 (1984) pp 49-73.

E Fraenkel, A. S. and I. Borosh. A generalization of Wythoff's game, J. Combinatorial Theory Ser. A, Vol 15 (1973) pp 175-191.
© Fraenkel, Aviezri S. and M. Lorberbom. Nimhoff games, J. Combin. Theory Ser. A, Vol 58, No 1 (1991) pp 1-25.

Mex

Definition

The minimum excluded value or mex of a set of non-negative integers is the least non-negative integer which does not occur in the set. It is denoted by $\operatorname{mex}\{a, b, c, \ldots, k\}$.

Example

$$
\begin{aligned}
& \operatorname{mex}\{1,4,5,7\}= \\
& \operatorname{mex}\{0,1,2,6\}=
\end{aligned}
$$

Mex

Definition

The minimum excluded value or mex of a set of non-negative integers is the least non-negative integer which does not occur in the set. It is denoted by $\operatorname{mex}\{a, b, c, \ldots, k\}$.

Example

$$
\begin{aligned}
& \operatorname{mex}\{1,4,5,7\}=0 \\
& \operatorname{mex}\{0,1,2,6\}=
\end{aligned}
$$

Mex

Definition

The minimum excluded value or mex of a set of non-negative integers is the least non-negative integer which does not occur in the set. It is denoted by $\operatorname{mex}\{a, b, c, \ldots, k\}$.

Example

$$
\begin{aligned}
& \operatorname{mex}\{1,4,5,7\}=0 \\
& \operatorname{mex}\{0,1,2,6\}=3
\end{aligned}
$$

The Grundy Function

Definition

The Grundy function $\mathcal{G}(\mathbf{p})$ of a position \mathbf{p} is defined recursively as follows:

- $\mathcal{G}(\mathbf{p})=0$ for any final position \mathbf{p}.
- $\mathcal{G}(\mathbf{p})=\operatorname{mex}\{\mathcal{G}(\mathbf{q}) \mid \mathbf{q}$ is an option of $\mathbf{p}\}$.

The Grundy Function

Definition

The Grundy function $\mathcal{G}(\mathbf{p})$ of a position \mathbf{p} is defined recursively as follows:

- $\mathcal{G}(\mathbf{p})=0$ for any final position \mathbf{p}.
- $\mathcal{G}(\mathbf{p})=\operatorname{mex}\{\mathcal{G}(\mathbf{q}) \mid \mathbf{q}$ is an option of $\mathbf{p}\}$.

Theorem

For a finite impartial game, \mathbf{p} belongs to class \mathcal{P} if and only if $\mathcal{G}(\mathbf{p})=0$.

