NEW RESULTS IN CIRCULAR NIM

Silvia Heubach \& Matthieu Dufour

California State University Los Angeles
University of Quebec at Montreal

48 ${ }^{\text {th }}$ SEICCGTC
March 6-10, 2017

Definition of the Game CN(n,k)

- n stacks of tokens arranged in a circle
- Select k consecutive stacks and remove at least one token from at least one of the k stacks
- Last player to move wins
- k = 1 corresponds to NIM
- Example: CN(8,3)

Main Question:

Who wins in a combinatorial game from a specific position, assuming both players play optimally?

Impartial Games

Only two possible outcome classes:

- Losing positions (P-positions)
- Winning positions (N-positions)

Characterization of positions

- From a losing position, all allowed moves lead to a winning position
- From a winning position, there is at least one move to a losing position.
- In normal play, the terminal positions are losing positions

Previous Results

- General results for $\mathrm{CN}(\mathrm{n}, 1), \mathrm{CN}(\mathrm{n}, \mathrm{n})$, and $\mathrm{CN}(\mathrm{n}, \mathrm{n}-1)$
- These cover all the games for $\mathrm{n} \leq 3$
- Solved cases not covered by general results for $n=4,5$, and 6 , with the exception of $\mathrm{CN}(6,2)$
- Also proved result for $\mathrm{CN}(8,6)$

Theorem [DH]

The P-positions of $\mathrm{CN}(8,6)$ are given by $\{(0, x, a, b, e, c, d, x) \mid a+b=c+d=x$, $e=\min \{x, a+d\}\}$

Results for $n=7$ (new)

- We have results for $\mathrm{CN}(7,3)$ and $\mathrm{CN}(7,4)$
- Generic position has a as the minimal value, and w.l.o.g., we assume that $b \leq g$

Results for $\mathrm{CN}(7,4)$

Theorem Let $a=\min (\mathbf{p})$ and $\mathrm{b} \leq \mathrm{g}$. The P-positions of $\mathrm{CN}(7,4)$ are given by one of the following 4 cases:

Case 1:

$a=b=0 ; c=g, d+e+f=c$

c

- c

c•
a•

Case 2:

$$
a=b=d=f ; c=e=g
$$

- c
c

Results for $\mathrm{CN}(7,4)$

Theorem Let $\mathrm{a}=\min (\mathbf{p})$ and $\mathrm{b} \leq \mathrm{g}$. The P-positions of $\mathrm{CN}(7,4)$ are given by one of the following 4 cases:

Case 3:
$a=b, c=g, d=f$
$0<a<\min \{c, d, e\}$
$a+c=d+e$

Case 4:
$\mathrm{a}=\mathrm{f}$
$a<\min \{b, c, e, g\}$
$\mathrm{b}+\mathrm{c}=\mathrm{d}+\mathrm{e}=\mathrm{g}+\mathrm{a}$

Results for CN(7,3)

Theorem Let $\mathrm{a}=\boldsymbol{\operatorname { m i n }}(\mathbf{p})$ and $\mathrm{b} \leq \mathrm{g}$ and $\mathbf{b}+\mathbf{c}+\mathbf{d}=\mathbf{e}+\mathbf{f}+\mathbf{g}$. The P-positions of $\mathrm{CN}(7,3)$ are given by one of the following 2 cases:

Case 1:
$a+b=d+e$

With the following inequalities

$\mathrm{a} \longrightarrow \mathrm{b}$ indicates that $\mathrm{a} \leq \mathrm{b}$

Results for $\mathrm{CN}(7,3)$

Theorem Let $\mathrm{a}=\boldsymbol{\operatorname { m i n }}(\mathbf{p})$ and $\mathrm{b} \leq \mathrm{g}$ and $\mathbf{b}+\mathbf{c}+\mathbf{d}=\mathbf{e}+\mathbf{f}+\mathbf{g}$. The P-positions of $\mathrm{CN}(7,3)$ are given by one of the following 2 cases:

Case 2:
$a+b=e+f$

With the following inequalities

$\mathrm{a} \longrightarrow \mathrm{b}$ indicates that $\mathrm{a} \leq \mathrm{b}$

Open Questions

- Missing cases are $\mathrm{CN}(6,2), \mathrm{CN}(7,2), \mathrm{CN}(7,5)$
- For $n=8$, only $\mathrm{CN}(8,6)$ is known
- It seems that CN($n, 2$) are difficult to find
- Also, CN(n,n-2) do not show common structure

THANKS!

Slides to be posted at www.calstatela.edu/faculty/silvia-heubach

