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Abstract

Let D be a set of positive integers. The distance graph generated
by D has all integers Z as the vertex set; two vertices are adjacent

whenever their absolute difference falls in D. We completely deter-
mine the chromatic number for the distance graphs generated by the

sets D = {2, 3, x, y} for all values x and y. The methods we use
include the density of sequences with missing differences and the pa-

rameter involved in the so called “lonely runner conjecture.” Previous
results on this problem include: For x and y being prime numbers,
this problem was completely solved by Voigt and Walther [30]; and

other results for special integers of x and y were obtained by Kemnitz
and Kolberg [18] and by Voigt and Walther [31].

Keywords: Distance graphs, chromatic number, density of sequences with
missing differences, lonely runner conjecture.
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1 Introduction

The study of distance graphs was motivated by the plane coloring problem:
What is the minimum number of colors needed to color all the points on
the Euclidean plane such that points with unit distance apart get different
colors? It is known that four colors is necessary and seven colors is sufficient
[16, 27], however, the exact number remains unknown.

Restricting the plane coloring problem to real numbers < has an easy
answer – using two colors alternatively on unit half open intervals. However,
the problem becomes complex when more restrictions are added instead of
only restricting different colors assigned to points with unit distance apart.

Eggleton, Erdős and Skilton [12] introduced the notion of coloring the
real line with a given forbidden distance set D. Let D be a subset of <.
Denote G(<, D) the graph with the vertex set < and edges connecting x and
y if |x−y| ∈ D. In [12], the chromatic number of G(<, D) for various families
of sets D was investigated, such as D = [1, δ] or D = (0, δ) for some real
δ > 1.

We study a problem considered in [12], namely, when D is a set of positive
integers. By isomorphism of components in G(<, D), this problem is equiva-
lent to considering the subgraph induced by all integers Z as the vertex set.
Denote such a subgraph by G(Z, D) or simply G(D), and call it the integral
distance graph (or simply, distance graph) generated by the distance set D.

The chromatic number of distance graphs, denoted by χ(D), for different
families of distance sets D has been studied extensively (cf. [8, 9, 12, 13, 14,
15, 18, 19, 23, 29, 31, 30, 34, 36]). Besides chromatic number, the fractional
chromatic number and circular chromatic number of distance graphs have
also been studied in the past two decades (cf. [24]).

Note that if x is a common divisor of all the elements in D, then G(D) con-
sists of disjoint subgraphs each isomorphic to G(D/x) where D/x = {d/x :
d ∈ D}. This implies that χ(D) = χ(D/x). Hence, we assume throughout
the article that gcd(D) = 1.

The chromatic number of distance graphs for 2-element distance sets D
is either 2 or 3. Namely, if D contains only odd numbers, then χ(D) = 2;
otherwise χ(D) = 3. The chromatic number of distance graphs for 3-element
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sets were studied by Eggleton et al. [12], Chen et al. [9], and Voigt [29], and
was completely settled by Zhu [36].

Theorem 1.1 [36] Let D = {a, b, c} with a < b < c and gcd(a, b, c) = 1.
Then

χ(D) =







2 if a, b, c are odd;
4 if D = {1, 2, 3m} or c = a + b and b− a 6≡ 0 (mod 3);
3 otherwise.

For 4-element sets, it was proved independently by Kemnitz and Marangio
[19, 20], and by Liu and Zhu [26] that χ(D) = 5 if D = {1, 2, 3, 4m} or
D = {x, y, y − x, y + x} where x and y are odd integers. Moreover, Barajas
and Serra [1] showed that, except these two families, the chromatic number
for all other 4-element sets D is at most 4.

Theorem 1.2 [1] Let D be a set of four positive integers. Then χ(D) 6 4
unless D = {1, 2, 3, 4m} or D = {x, y, y − x, y + x} where x and y are odd
integers.

The family D = {2, 3, x, y} is of special interest in the study of prime
distance graphs. Let P denote the set of all primes, and let D be a prime
set, i.e., D ⊆ P. As D does not contain any multiples of 4, the modular 4
function on integers gives a proper coloring for G(D). Indeed, it was proved
by Eggleton et al. [15] that χ(G(Z, P)) = 4, and for 3-element prime sets D,
χ(D) = 4 if and only if D = {2, 3, 5}.

Let D be a prime set. If 2 6∈ D, then χ(D) = 2; if 3 6∈ D, then χ(D) 6 3,
and the equality holds if and only if 2 ∈ D and |D| > 2. Hence, to study the
chromatic number of a distance graph generated by a prime set it bounds to
finding the chromatic number of D with {2, 3} ⊆ D, for which χ(D) is either
3 (D is called Class 3) or 4 (Class 4). It was proved in [15] that if D ⊆ P and
D = {2, 3, x, x +2} (that is, x and x +2 are twin primes), then D is Class 4.
Furthermore, Voigt and Walther [30] completely characterized all 4-element
Class 4 prime sets as follows.

Theorem 1.3 [30] Let D = {2, 3, p, q} be a set of primes with p > 7 and
q > p + 2. Then χ(D) = 4 holds if and only if (p, q) is one of the following:

(11, 19), (11, 23), (11, 37), (11, 41), (17, 29), (23, 31), (23, 41), (29, 37).
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For the sets D = {2, 3, x, x + s} with general values x, s ∈ Z
+, Kemnitz

and Kolberg [18] determined the chromatic number for all s 6 9. Voigt and
Walther [31] proved that χ({2, 3, x, x+s}) = 3, if s > 10 and x > s2−6s+3.

Our aim is to completely determine the chromatic number of distance
graphs generated by the sets D = {2, 3, x, y} for all positive integers x and
y. We utilize the close connections among coloring parameters (chromatic
number, fractional chromatic number, and circular chromatic number) of
distance graphs and two number theory problems, namely, the density of sets
of forbidden differences, denoted by µ(D), and the parameter κ(D) involved
in the lonely runner conjecture.

In the next section, we introduce µ(D) and κ(D), together with their
useful relations with coloring parameters of distance graphs. In Section 3,
we establish the main results, followed by a concluding remark in the last
section.

2 µ(D) and κ(D)

Let S be a sequence of non-negative integers. For a non-negative integer n,
let S[n] denote the number of elements in S that are less than or equal to
n. That is, S[n] = |S ∩ {0, 1, 2, . . . , n}|. The upper density and the lower
density of S are defined respectively as the limit sup and limit inf of the ratio
S[n]/(n + 1). If the upper density and the lower density are equal, then the
common value is called the density of S, and is denoted by σ(S). That is,

σ(S) = lim
n→∞

S[n]/(n + 1).

Let D be a set of positive integers. A sequence S is called a D-sequence if
a−b 6∈ D for every a, b ∈ S. The density of sequences with missing differences
in D, denoted by µ(D), is defined by:

µ(D) = sup {σ(S) : S is a D-sequence}.

The parameter µ(D) is closely related to the fractional chromatic number
of distance graphs. The fractional chromatic number of a graph G, denoted
by χf(G), is the minimum ratio m/n (m, n ∈ Z+) of an (m/n)-coloring,
where an (m/n)-coloring is a function on V (G) to n-element subsets of [m] =

4



{1, 2, · · · , m} such that if uv ∈ E(G) then f(u)∩f(v) = Ø. There are several
equivalent definitions of the fractional chromatic number; we refer the readers
to the book by Scheinerman and Ullman [28].

Chang et al. [8] proved the following connection between distance graphs
and µ(D): For any set of positive integers D,

χf(G(Z, D)) = 1/µ(D). (1.1)

Now we introduce the parameter κ(D). For any real number x, let ||x||
denote the minimum distance from x to an integer, that is, ||x|| = min{dxe−
x, x−bxc}. For a given set D and any real t, denote ||tD|| the smallest value
||td|| among all d ∈ D. The kappa value of D, denoted by κ(D), is the
supremum of ||tD|| among all real t. That is,

κ(D) = sup{α ∈ (0, 1/2) : ||td|| > α for some t ∈ (0, 1), for all d ∈ D}.

The parameter κ(D) is involved in the so called “lonely runner conjec-
ture,” which was first introduced by Wills [32]; the poetic name was due
to Goddyn [4]. Suppose there are k runners running on a circular field
with circumference l. Each runner is running at a constant speed, and all
runners have different speeds. The conjecture asserts that for each runner,
there exists some time t such that he becomes lonely, which means that all
other runners are at least l/k apart from him. By taking ratio and letting
0 < t < 1, we may assume without loss of generality that l = 1 and the
speeds of the runners are integers. If we fix one runner ri, and take absolute
relative speeds of other runners to ri, then we get a set with k − 1 positive
integers (of relative speeds). Hence, the conjecture is equivalent to: For any
positive integral set D, it holds that κ(D) > 1

|D|+1
. The conjecture has been

confirmed for |D| 6 6 (that is, up to seven runners) [2, 3, 5, 10, 11], and
remains open for |D| > 7.

Notice that for any set D, it holds that κ(D) 6 µ(D). The following two
results will be frequently used to prove our main results in this article. The
first was proved by Haralambis [17].

Lemma 2.1 [17] Let D be a set of positive integers, and let α ∈ (0, 1]. If
for every D-sequence S with 0 ∈ S there exists a positive integer n such that
S[n]/(n + 1) 6 α, then µ(D) 6 α.
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It is known [35] that χf(G) 6 χ(G) holds for all graphs G, and χ(D) 6

d1/κ(D)e holds for all sets D. Combining these with (1.1) we have:

Lemma 2.2 [8, 35] For any given distance set D, it holds that

1/µ(D) 6 χ(D) 6 d1/κ(D)e.

Corollary 2.3 Let D be a set of positive integers. If κ(D) > 1/3, then
χ(D) 6 3; if µ(D) < 1/3, then χ(D) > 4.

3 Main Results

Let D = {2, 3, x, y}, x < y. As we have learned in Section 1, χ(D) is either
3 or 4, except χ({1, 2, 3, 4m}) = χ({2, 3, 5, 8}) = 5. If x = 1, then χ(D) = 4,
except χ(D) = 5 when y = 4m for all positive integer m. Hence, in the rest
of the article we assume 4 6 x < y.

For a given D-sequence S, we shall write elements of S in an increas-
ing order, S = s0, s1, s2, . . . with s0 < s1 < s2 < . . ., and denote its
difference sequence by ∆(S) = δ0, δ1, δ2, . . . where δi = si+1 − si. We
call a subsequence of consecutive terms in S, sa, sa+1, . . . , sa+b−1, gener-
ate a periodic interval of k copies, k > 1, if sj(a+b)+i = sa+i for all
0 6 i 6 b − 1, 1 6 j 6 k − 1. We denote such a periodic subsequence of S
by (sa, sa+1, . . . , sa+b−1)

k. If the periodic interval repeats infinitely we sim-
ply denote it by (sa, sa+1, . . . , sa+b−1). A sequence can be a mixture of some
finite periodic intervals with an infinite periodic subsequence. For instance,
we denote S = a, b, c, a, b, c, d, d, d, e, f, e, f, e, f, e, f, . . . by (a, b, c)2(d)3(e, f).

Observation 1 A sequence of non-negative integers S is a D-sequence if
and only if the following holds for any a 6 b:

b
∑

i=a

δi 6∈ D.

In the following two results, we use the parameter µ(D) to prove χ(D) = 4
for some sets D.
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Theorem 3.1 Let D = {2, 3, 6, x}, x > 4. Then

χ(Z, D) =

{

4, if x ≡ 0,±1,±4 (mod 9);
3, otherwise.

Proof. Let D = {2, 3, 6, x}, x > 4. Assume x 6≡ 0,±1,±4 (mod 9). Define
f by

f(z) =







1, if z ≡ 0, 1, 5 (mod 9);
2, if z ≡ 3, 4, 8 (mod 9);
3, if z ≡ 2, 6, 7 (mod 9).

It is easy to check that f is a proper 3-coloring for G(Z, D). Hence the result
follows for x 6≡ 0,±1,±4 (mod 9).

To complete the proof, by Corollary 2.3, it is enough to show that if
x ≡ 0,±1,±4 (mod 9), then µ(D) < 1/3. Assume to the contrary, µ(D) >

1/3. Then µ(D) > (1/3) − ε for any ε > 0. By Lemma 2.1, there exists

a D-sequence S such that for any n > 0, S[n]
n+1

> (1/3) − ε. Hence, for any
positive integer n, there exists a D-sequence S such that S[3t] > t + 1 holds
for every 3t 6 n. By taking n as large as needed, this implies, for instance,
S[0] > 1, so 0 ∈ S; S[3] > 2, so 1 ∈ S (as 2, 3 ∈ D); S[6] > 3, so 5 ∈ S; and
S[9] > 4, so 9 ∈ S (since 6, 7, 8 /∈ S). Continuing this process, we conclude
that S has the infinite periodic difference sequence ∆(S) = (1, 4, 4), and so D
does not contain any number from 9Z

∗ ∪ (9Z
∗ ± 1)∪ (9Z

∗ ± 4), contradicting
x ≡ 0,±1,±4 (mod 9).

Theorem 3.2 Let D = {2, 3, 10, x} or D = {2, 3, 4, x}, x > 5. Then

χ(Z, D) =

{

4, if x ≡ 0,±1 (mod 6);
3, otherwise.

Proof. Let D = {2, 3, 10, x} or D = {2, 3, 4, x}, x > 5. Assume x 6≡ 0,±1
(mod 6). Define f by

f(z) =







1, if z ≡ 0, 1 (mod 6);
2, if z ≡ 2, 3 (mod 6);
3, if z ≡ 4, 5 (mod 6).

It is easy to check that f is a proper 3-coloring for G(Z, D).
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To complete the proof, by Corollary 2.3, it is enough to show that if
x ≡ 0,±1 (mod 6) then µ(D) < 1/3. Assume to the contrary, µ(D) > 1/3.
Then µ(D) > (1/3) − ε for any ε > 0. Similar to the proof of Theorem 3.1,
by Lemma 2.1, there exists a D-sequence S such that S[3t] > t + 1 holds for
every t with 3t 6 n, where n is a positive integer as large as needed.

Now consider D = {2, 3, 10, x}. As 2, 3, 10 ∈ D, it must be either
{0, 1, 5, 6} ⊆ S or {0, 1, 6, 7} ⊆ S. In either case, by considering the val-
ues of t with S[3t] > t + 1, we conclude that ∆(S) must be one of the
following:

(1, 5), (1, 4, 1, 6), or (1, 4, 1, 6)k(1, 5) for some k > 1.

For any of the above, D does not contain any number from 6Z
∗ ∪ (6Z

∗ ± 1).
Hence, x 6≡ 0,±1 (mod 6). This completes the proof for D = {2, 3, 10, x}.

For D = {2, 3, 4, x}, by a similar argument we get ∆(S) = (1, 5), so
x 6≡ 0,±1 (mod 6).

A discrete version of κ(D) for finite sets D is given as follows. For a set
of D, let λ, p 6 2max D be positive integers, gcd(λ, p) = 1. Denote

|λD|p = min{|λd|p : d ∈ D},

where |a|p = a mod p. Then we have

Proposition 3.3 For a finite set D of positive integers,

κ(D) = max {(|λD|p/p : 1 6 p, λ 6 2maxD, gcd(λ, p) = 1}.

In the next result, we use the above definition of κ(D) to show χ(D) = 3
for some sets D.

Theorem 3.4 Let D = {2, 3, x, x + 10}, x > 4. Then

χ(Z, D) =

{

4 if x = 5;
3 otherwise.

Proof. The proofs for x = 5 and 6 follow by the known result that
χ({2, 3, 5}) = 4 and by Theorem 3.1, respectively. For the remaining val-
ues of x, it suffices to show that κ(D) > 1/3. Consider three cases.
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Case 1: x = 3k, for k > 3. Let n = 2x + 10 = 6k + 10. Then dn/3e =
2k + 4. It is enough to find λ such that the following holds for all d ∈ D:

2k + 4 6 |λd|n 6 4k + 6. (3.1)

Let A = [k + 2, k + 2 + bk/3c]. Then |2y|n and |3y|n satisfy (3.1) for any
y ∈ A.

Since x and x + 10 are the inverse of each other on Zn as n = 2x + 10,
it is enough to show that there exists some λ ∈ A such that |λx|n satisfies
(3.1). As k > 3, we have k + 2, k + 3 ∈ A. Assume k is even. Then
(k + 3)x = (6k + 10)(k/2) + 4k ≡ 4k (mod n). So |λx|n satisfies (3.1) with
λ = k + 3.

Assume k is odd. Then (k +2)x = (6k +10)((k− 1)/2)+4k +5 ≡ 4k +5
(mod n). Hence |λx|n satisfies (3.1) with λ = k + 2.

Case 2: x = 3k + 1, for k > 1. Let n = 2x + 10 = 6k + 12. Then
n/3 = 2k + 4. It is enough to find λ such that for all d ∈ D,

2k + 4 6 |λd|n 6 4k + 8. (3.2)

Let
A = [k + 2, k + 2 + b(k + 2)/3c].

Then |2y|n and |3y|n satisfy (3.2), for any y ∈ A.

As k > 1, we have k + 2, k + 3 ∈ A. Similar to Case 1, let λ = k + 3 or
k + 2, when k is even or odd, respectively. One can easily verify that |λx|n
satisfies (3.2).

Case 3: x = 3k + 2, for k > 2. Let n = 2x + 10 = 6k + 14. Then
dn/3e = 2k + 5. It is enough to find λ such that

2k + 5 6 |λd|n 6 4k + 9. (3.3)

Let
A = [k + 3, k + 3 + bk/3c].

Then |2y|n and |3y|n satisfy (3.3), for any y ∈ A.

Similar to Case 1, letting λ = k + 3 or k + 4, when k is even or odd,
respectively, it can be verified that |λx|n satisfies (3.3).
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By all the above results we now only need to focus on the sets D =
{2, 3, x, x + s} with x > 7 and s > 11. Henceforth, we use an alternative
(“continuous”) definition of κ(D).

Let α ∈ (0, 1/2). For a positive integer m, define

Im(α) = {t ∈ (0, 1) : ||tm|| > α}.

That is,

Im(α) = {t : q + α 6 tm 6 q + 1 − α, 0 6 q 6 m − 1}.

By the definition of κ(D), we have

κ(D) = sup{α ∈ (0, 1/2) : ∩i∈DIi(α) 6= Ø}.

Let D = {2, 3, x, y}. To show κ(D) > 1/3 it bounds to proving:

I2(1/3) ∩ I3(1/3) ∩ Ix(1/3) ∩ Iy(1/3) 6= Ø.

In addition, because I2∩I3 = [1/6, 2/9]∪[7/9, 5/6], by symmetry, to show
κ(D) > 1/3 it is enough to show:

[1/6, 2/9] ∩ Ix(1/3) ∩ Iy(1/3) 6= Ø.

For simplicity we denote Im(1/3) by Im. Each Im is the union of m
disjoint intervals centered at (2p + 1)/2m, 0 6 p 6 m− 1, with width 1/3m.
Precisely, we write

Im,p = [(3p + 1)/3m, (3p + 2)/3m],

where
Im = ∪m−1

p=0 Im,p.

We call each Im,p an Im-interval. Notice that the gap between any two
consecutive Im-intervals, Im,k and Im,k+1, is 2/(3m), twice the length of an
Im-interval.

Theorem 3.5 Let D = {2, 3, x, x + s} where x = 7, 8 and s > 11. Then
χ(D) = 3.
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Proof. Note, I7 ∩ [1/6, 2/9] = [4/21, 2/9] and I8 ∩ [1/6, 2/9] = [1/6, 5/24].
It is easy to calculate that when s > 11, then Ix ∩ Ix+s ∩ [1/6, 2/9] 6= Ø for
x = 7, 8. Hence κ(D) > 1/3 and so χ(D) = 3.

Lemma 3.6 For every m > 12, m 6= 15, 16, there exists some Im,p ⊆
[1/6, 2/9].

Proof. Let m > 12 and m 6= 15, 16. It is straightforward to show that there
exists some integer p, 0 6 p 6 m−1, such that m 6 6p+2 and 9p+6 6 2m.
This implies, (3p+1)/3m > 1/6 and (3p+2)/3m 6 2/9, so Im,p ⊆ [1/6, 2/9].

Theorem 3.7 Let D = {2, 3, x, y}, 12 6 x < y, x 6= 15, 16. Then χ(D) = 3
for all y > 2x.

Proof. By Lemma 3.6, there exists an interval Ix,p ⊆ [1/6, 2/9]. The length
of Ix,p is 1/(3x). Let y > 2x. The length of each Iy-interval is 1/(3y),
and the gap between any two consecutive Iy-intervals is 2/(3y). Because
2/(3y) 6 1/(3x) we conclude that Iy∩Ix,p 6= Ø, implying I2∩I3∩Ix∩Iy 6= Ø.
So the result follows.

Theorem 3.8 Let D = {2, 3, x, y}. Then χ(D) = 3 for all the following:

(a) x = 9, y > 36;

(b) x = 11, y > 66;

(c) x = 15, y > 60;

(d) x = 16, y > 48.

Proof. Let x = 9. Then I9 ∩ [1/6, 2/9] = [1/6, 5/27] with length 1/54
(since I9,1 = [4/27, 5/27]). Let y > 36. Then the distance between any two
consecutive Iy-interval’s is 2/(3y) 6 1/54, implying I9 ∩ Iy ∩ [1/6, 2/9] 6= Ø.
Thus, χ(D) = 3. Similarly, results for x = 11, 15, 16 can be obtained.

Lemma 3.9 If m > 18k−1, then k of the Im-intervals are within [1/6, 2/9].
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Proof. Write m = 18k + i, i = −1, 0, 1, 2, · · · , 16. It is enough to show that
there are k intervals within [1/6, 2/9]. Note, Im,p ⊆ [1/6, 2/9] if and only if
3p+1
3m

> 1/6 and 3p+2
3m

6 2/9, which implies

3k +
i − 2

6
6 p 6 4k +

2i − 6

9
.

It is easy to check that for i = −1, 0, 1, · · · , 16, there are at least k values of
p that would satisfy the above two inequalities.

Theorem 3.10 If D = {2, 3, x, x+s} with s > 11 and x > 53, then χ(D) =
3.

Proof. By Corollary 2.3 it is enough to show κ(D) > 1/3 which is equivalent
to show I = Ix ∩ Ix+s ∩ [1/6, 2/9] 6= Ø. Assume to the contrary, I = Ø.
Suppose there are exactly k of the Ix-intervals in [1/6, 2/9]. By Lemma 3.9,
k > 3. Let a and b be respectively the smallest and the largest values of Ix ∩
[1/6, 2/9]. The length of the interval [a, b] is (k+2(k−1))/3x = (3k−2)/3x.
Since I = Ø, so Ix+s ∩ Ix ∩ [a, b] = Ø. Hence, there are k− 1 intervals of Ix+s

within [a, b], implying (k−1+2k)/3(x+s) = (3k−1)/3(x+s) > (3k−2)/3x.
Therefore, s < x/(3k − 2). By the assumption that s > 11, we conclude
x > 33k − 21. Since k > 3, by Lemma 3.9, there are k + 1 intervals of Ix

within [1/6, 2/9], a contradiction.

By Theorems 3.1, 3.2, 3.4, 3.8 and 3.10, to completely determine the
value of χ(D) for D = {2, 3, x, y}, it remains to check the following:

• x = 9 and 20 6 y < 36;

• x = 11 and 22 6 y < 66;

• x = 12, 13, 14 or 17 6 x 6 52, and x + 11 6 y < 2x.

• x = 15 and 26 6 y < 60;

• x = 16 and 27 6 y < 48;

Because there are only a finite number of combinations of x and y values in
the above, we established an algorithm to determine whether κ(D) > 1/3 by
checking whether the interval I is an empty set or not for all the above sets
D. We obtain:
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Theorem 3.11 Let D = {2, 3, x, x + s} with x > 9, x 6= 10, and s > 11.
Then κ(D) > 1/3 (so χ(D) = 3), except (x, x + s) falls in the following set:

A = {(9, 23), (11, 23), (11, 27), (11, 28), (11, 32), (11, 37), (11, 41), (11, 46),

(15, 35), (15, 41), (16, 37), (17, 29), (18, 31), (23, 36), (23, 41), (24, 37), (28, 41)}.

For the sets D included in A in Theorem 3.11 we used an algorithm em-
ploying the idea presented in the proofs of Theorems 3.1 and 3.2 to determine
the existence of a D-sequence S with S[3t] > t + 1 for all t; if S does not
exist then µ(D) < 1/3 and so χ(D) = 4. It turned out that µ(D) < 1/3 for
all the sets A in Theorem 3.11, except (x, x + s) ∈ {(24, 37), (28, 41)}. In the
following we show that the chromatic number for these two sets is also 4.

Notice that it can be easily proved that if f is a proper 3-coloring for
G(Z, {2, 3, x, y}) where x ≡ 0,±1 (mod 6) or y ≡ 0,±1 (mod 6), then there
exist three consecutive integers z, z + 1, z + 2 that receive different colors,
that is, |{f(z), f(z + 1), f(z + 2)}| = 3. For otherwise, a proper 3-coloring
using colors a, b, c must be a periodic function on vertices by repeating the
pattern a, a, b, b, c, c (period 6), contradicting the assumption that x ≡ 0,±1
(mod 6) or y ≡ 0,±1 (mod 6).

Theorem 3.12 Let D = {2, 3, x, x + s} with x > 9, x 6= 10, and s > 11.
Then χ(D) = 4 for every (x, x + s) falls in A in Theorem 3.11.

Proof. Let (x, x + s) = (24, 37). Suppose to the contrary, χ(D) = 3. Let f
be a 3-coloring for G(D). Without loss of generality, we assume f(0) = a,
f(1) = b and f(2) = c, implying f(3) = c, f(4) = a, f(−1) = a, f(−2) = c,
f(−4) = b, and f(6) = b. Consider the following three cases.
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Case 1: f(32) = a. Then we have the following:

f(35) = f(−5) = b, f(30) = f(8) = c
→ f(37) = c, f(−7) = a
→ f(34) = b
→ f(36) = c, f(10) = a
→ f(38) = a, f(12) = f(13) = b
→ f(40) = b, f(14) = c
→ f(16) = a, f(−10) = b
→ f(−8) = f(19) = c
→ f(43) = a
→ f(45) = b
→ f(47) = c
→ f(23) = b
→ f(26) = a
→ impossible to color -11.

Case 2: f(32) = b. We have

f(35) = a
→ f(33) = f(38) = c
→ f(30) = f(9) = a, f(36) = b
→ f(27) = b, f(−7) = f(12) = c
→ f(24) = c, f(−10) = a
→ f(14) = b
→ f(17) = a
→ f(20) = c, f(15) = b
→ f(23) = b, f(18) = a
→ impossible to color 21.
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Case 3: f(32) = c. We have

f(30) = f(8) = a
→ f(33) = f(−7) = c, f(27) = f(5) = b
→ f(36) = b, f(24) = c, f(−10) = f(9) = a
→ f(39) = a, f(12) = c
→ f(42) = c, f(−12) = f(15) = b
→ f(−9) = a
→ f(−6) = c
→ f(−3) = b
→ f(21) = a
→ impossible to color 18.

Therefore, χ({2, 3, 24, 37}) = 4.

Now consider D = {2, 3, 28, 41}. Suppose, to the contrary, χ(D) = 3. Let
f be a 3-coloring for G(D). Without loss of generality, we assume f(0) = a,
f(1) = b and f(2) = c, implying f(3) = c, f(4) = a, f(−1) = a, f(−2) = c,
f(−4) = b, and f(6) = b. Consider the following three cases.

Case 1: f(36) = a. Then we have the following:

f(39) = f(−5) = b, f(8) = f(34) = c
→ f(41) = c, f(11) = f(−7) = a
→ f(13) = f(38) = b, f(9) = c
→ f(10) = a
→ f(12) = b
→ f(40) = f(14) = c
→ f(37) = f(42) = f(16) = a
→ f(44) = b, f(35) = c
→ f(33) = b, f(−6) = a
→ f(5) = a, f(−8) = c
→ f(46) = c
→ f(18) = b
→ f(21) = c
→ f(23) = a
→ impossible to color 20.
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Case 2: f(36) = b. Then we have

f(39) = f(−5) = a
→ f(42) = f(−7) = f(37) = c
→ f(40) = b, f(34) = f(9) = a
→ f(43) = a, f(12) = c, f(31) = b
→ f(15) = b, f(−10) = a
→ f(−13) = c
→ impossible to color 28.

Case 3: f(36) = c. Then we have

f(34) = a
→ f(37) = f(−7) = c, f(31) = b
→ f(9) = f(−10) = a, f(40) = b
→ f(12) = c, f(43) = a
→ f(15) = b
→ f(−13) = c
→ impossible to color 28.

Therefore, χ({2, 3, 28, 41}) = 4.

4 Concluding Remark

The chromatic numbers of the distance graphs generated by D = {2, 3, x, y}
for all values of x and y are completely determined. Let x = 1. Then
χ({1, 2, 3, y}) = 5 if y = 4m; otherwise χ({1, 2, 3, y}) = 4. For x > 4, χ(D)
is either 3 or 4, except χ({2, 3, 5, 8}) = 5; the two tables below list all the
sets D with chromatic number 4.

We prove χ(D) = 3 by either giving a proper 3-coloring (Theorems 3.1,
3.2) or by showing κ(D) > 1/3 (most cases). We prove χ(D) = 4 by ei-
ther verifying µ(D) < 1/3 (most cases) or by showing the non-existence of a
proper 3-coloring (Theorem 3). It turned out that all the sets D with chro-
matic number 3 have κ(D) > 1/3; and all sets D with chromatic number 4
satisfy µ(D) < 1/3, except D = {2, 3, 24, 37} and D = {2, 3, 28, 41} which
have µ(D) > 1/3 (and κ(D) < 1/3).
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The exact values of κ(D) and µ(D) (or equivalently χf (D)) for sets D =
{2, 3, x, y} are worthy for future investigation. Another research direction
one might take is to apply the methods used in this article to study other
families of sets D, such as the open problem of characterizing prime sets into
Classes 3 and 4.

Table 1: Sets D = {2, 3, x, x + s} with χ(D) = 4 for 1 6 s 6 10.

s x References

1 4, 5, 10 [18]
2 x 6≡ 2 (mod 6) [18]
3 x 6≡ 3 (mod 9), x 6= 5 [18]
4 5, 6 [18]
5 5 [18]
6 5 [18]
7 4, 5, 6, 10, 11, 12, 16, 17, 22 [18]
8 4, 5, 6, 9, 10, 11, 13, 15, 18, 19, 23, 24, 28, 29, 33, 37, 42, 47 [18]
9 4, 5, 10 [18]
10 5 new

Table 2: Sets D = {2, 3, x, y} with χ(D) = 4 for y > x + 11.

x y References

4, 10 y ≡ 0,±1 (mod 6) new
5 all positive integers y 6= 5 [18, 20, 26]
6 y ≡ 0,±1,±4 (mod 9) new

x > 7, x 6= 10
(x, y) ∈ {(9, 23), (11, 23), (11, 27), (11, 28), (11, 32), new
(11, 37), (11, 41), (11, 46), (15, 35), (15, 41), (16, 37), (some in [30])
(17, 29), (18, 31), (23, 36), (23, 41), (24, 37), (28, 41)}
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