A Generalization of the Nim and Wythoff games

S. Heubach¹ M. Dufour²

¹Dept. of Mathematics, California State University Los Angeles

²Dept. of Mathematics, Université du Québec à Montréal

March 10, 2011 42nd CGTC Conference, Boca Raton, FL

(日)

Nim and Wythoff

▶ Nim: Select one of the *n* stacks, take at least one token

► Wythoff: Take any number of tokens from one stack OR select the same number of tokens from both stacks

Generalization of Wythoff to n stacks

Wythoff: Take any number of tokens from **one** stack OR select the **same** number of tokens from both stacks

Generalization: Take any number of tokens from one stack OR

- ► take the **same** number of tokens from ALL stacks
- ► take the same number of tokens from any TWO stacks
- ► take the same number of tokens from any non-empty SUBSET of stacks

(日)

Generalized Wythoff on *n* stacks

Let $B \subseteq \mathcal{P}(\{1, 2, 3, ..., n\})$ with the following conditions:

- 1. $\emptyset \notin B$
- 2. $\{i\} \in B$ for i = 1, ..., n.

A legal move in generalized Wythoff $\mathcal{GW}_n(B)$ on *n* stacks induced by *B* consists of:

- Choose a set $A \in B$
- Remove the same number of tokens from each stack whose index is in A

The first player who cannot move loses.

(日)

Examples

▶ Nim: Select one of the *n* stacks, take at least one token

Wythoff: Either take any number of tokens from one stack OR select the same number of tokens from both stacks

同下 イヨト イヨト

Examples

▶ Nim: Select one of the *n* stacks, take at least one token $B = \{\{1\}, \{2\}, \dots, \{n\}\}$

Wythoff: Either take any number of tokens from one stack OR select the same number of tokens from both stacks

Examples

▶ Nim: Select one of the *n* stacks, take at least one token $B = \{\{1\}, \{2\}, \dots, \{n\}\}$

Wythoff: Either take any number of tokens from one stack OR select the same number of tokens from both stacks

$B = \{\{1\}, \{2\}, \{1, 2\}\}$

日本(日本(日)

Goal

- ► Generalized Wythoff is a two-player impartial game
- All positions (configurations of stack heights) are either winning or losing
- Goal: Determine the set of losing positions

Smaller Goal: Say something about the structure of the losing positions

(日)

Results for Wythoff

Let $\Phi = \frac{1+\sqrt{5}}{2}$. Then the set of losing positions is given by

$$\mathcal{L} = \{(\lfloor n \cdot \Phi \rfloor, \lfloor n \cdot \Phi \rfloor + n) | n \ge 0\}$$

They can be created recursively as follows:

► For a_n, find he smallest positive integer not yet used for a_i and b_i, i < n.</p>

►
$$b_n = a_n + n$$
. Repeat...

n	0	1	2	3	4	5
a_n						
b_n						

Results for Wythoff

Let $\Phi = \frac{1+\sqrt{5}}{2}$. Then the set of losing positions is given by

$$\mathcal{L} = \{(\lfloor n \cdot \Phi \rfloor, \lfloor n \cdot \Phi \rfloor + n) | n \ge 0\}$$

They can be created recursively as follows:

► For a_n, find he smallest positive integer not yet used for a_i and b_i, i < n.</p>

►
$$b_n = a_n + n$$
. Repeat...

п	0	1	2	3	4	5
a_n	0					
b_n	0					

Results for Wythoff

Let $\Phi = \frac{1+\sqrt{5}}{2}$. Then the set of losing positions is given by

$$\mathcal{L} = \{(\lfloor n \cdot \Phi \rfloor, \lfloor n \cdot \Phi \rfloor + n) | n \ge 0\}$$

They can be created recursively as follows:

► For a_n, find he smallest positive integer not yet used for a_i and b_i, i < n.</p>

►
$$b_n = a_n + n$$
. Repeat...

п	0	1	2	3	4	5
a_n	0	1				
b_n	0					

Results for Wythoff

Let $\Phi = \frac{1+\sqrt{5}}{2}$. Then the set of losing positions is given by

$$\mathcal{L} = \{(\lfloor n \cdot \Phi \rfloor, \lfloor n \cdot \Phi \rfloor + n) | n \ge 0\}$$

They can be created recursively as follows:

► For a_n, find he smallest positive integer not yet used for a_i and b_i, i < n.</p>

►
$$b_n = a_n + n$$
. Repeat...

п	0	1	2	3	4	5
a_n	0	1				
b_n	0	2				

Results for Wythoff

Let $\Phi = \frac{1+\sqrt{5}}{2}$. Then the set of losing positions is given by

$$\mathcal{L} = \{(\lfloor n \cdot \Phi \rfloor, \lfloor n \cdot \Phi \rfloor + n) | n \ge 0\}$$

They can be created recursively as follows:

► For a_n, find he smallest positive integer not yet used for a_i and b_i, i < n.</p>

►
$$b_n = a_n + n$$
. Repeat...

Results for Wythoff

Let $\Phi = \frac{1+\sqrt{5}}{2}$. Then the set of losing positions is given by

$$\mathcal{L} = \{(\lfloor n \cdot \Phi \rfloor, \lfloor n \cdot \Phi \rfloor + n) | n \ge 0\}$$

They can be created recursively as follows:

► For a_n, find he smallest positive integer not yet used for a_i and b_i, i < n.</p>

►
$$b_n = a_n + n$$
. Repeat...

п	0	1	2	3	4	5
a_n	0	1	3			
b_n	0	2	5			

Results for Wythoff

Let $\Phi = \frac{1+\sqrt{5}}{2}$. Then the set of losing positions is given by

$$\mathcal{L} = \{(\lfloor n \cdot \Phi \rfloor, \lfloor n \cdot \Phi \rfloor + n) | n \ge 0\}$$

They can be created recursively as follows:

► For a_n, find he smallest positive integer not yet used for a_i and b_i, i < n.</p>

►
$$b_n = a_n + n$$
. Repeat...

п	0	1	2	3	4	5
a_n	0	1	3	4	6	8
b_n	0	2	5	7	10	13

For the game of Wythoff, for any given position (a, b), there is exactly one a losing position of the form (a, y), (x, b), (z, z + |b - a|) for some $x \ge 0$, $y \ge 0$, and $z \ge 0$.

This structural result can be visualized as follows:

・ 同ト ・ ヨト ・ ヨト

For the game of Wythoff, for any given position (a, b), there is exactly one a losing position of the form (a, y), (x, b), (z, z + |b - a|) for some $x \ge 0$, $y \ge 0$, and $z \ge 0$.

This structural result can be visualized as follows:

同トイヨトイヨト

For the game of Wythoff, for any given position (a, b), there is exactly one a losing position of the form (a, y), (x, b), (z, z + |b - a|) for some $x \ge 0$, $y \ge 0$, and $z \ge 0$.

This structural result can be visualized as follows:

F 4 3 F

3.5

For the game of Wythoff, for any given position (a, b), there is exactly one a losing position of the form (a, y), (x, b), (z, z + |b - a|) for some $x \ge 0$, $y \ge 0$, and $z \ge 0$.

This structural result can be visualized as follows:

- E - E

For the game of Wythoff, for any given position (a, b), there is exactly one a losing position of the form (a, y), (x, b), (z, z + |b - a|) for some $x \ge 0$, $y \ge 0$, and $z \ge 0$.

This structural result can be visualized as follows:

F 4 3 F

For the game of Wythoff, for any given position (a, b), there is exactly one a losing position of the form (a, y), (x, b), (z, z + |b - a|) for some $x \ge 0$, $y \ge 0$, and $z \ge 0$.

This structural result can be visualized as follows:

F 4 3 F

For the game of Wythoff, for any given position (a, b), there is exactly one a losing position of the form (a, y), (x, b), (z, z + |b - a|) for some $x \ge 0$, $y \ge 0$, and $z \ge 0$.

This structural result can be visualized as follows:

F 4 3 F

For the game of Wythoff, for any given position (a, b), there is exactly one a losing position of the form (a, y), (x, b), (z, z + |b - a|) for some $x \ge 0$, $y \ge 0$, and $z \ge 0$.

This structural result can be visualized as follows: (a, b) = (6, 5)

荷とくほとくほど

For the game of Wythoff, for any given position (a, b), there is exactly one a losing position of the form (a, y), (x, b), (z, z + |b - a|) for some $x \ge 0$, $y \ge 0$, and $z \ge 0$.

This structural result can be visualized as follows: (a, b) = (6, 5)

S. Heubach, M. Dufour

A Generalization of the Nim and Wythoff games

$$\overrightarrow{e}_i = i^{\text{th}}$$
 unit vector; $\overrightarrow{e}_A = \sum_{i \in A} \overrightarrow{e}_i$

Conjecture

In the game of generalized Wythoff $\mathcal{GW}_n(B)$, for any position $\overrightarrow{p} = (p_1, p_2, \dots, p_n)$ and any $A = \{i_1, i_2, \dots, i_k\} \subseteq B$, there is a unique losing position of the form $\overrightarrow{p} + m \cdot \overrightarrow{e}_A$, where $m \ge -\min_{i \in A} \{p_i\}.$

Theorem

The conjecture is true for $|A| \le 2$, that is, if play is either on a single stack or any pair of two stacks.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Example

 $\mathcal{GW}_3(\{\{1\},\{2\},\{3\},\{1,2\},\{1,3\},\{2,3\}\})$ - three stacks, with play on either a single or a pair of stacks. $\vec{p} = (11, 17, 20)$

Α			\tilde{p}		
{1}	(26, 17, 20)	=	(11, 17, 20)	+	$15\cdot(1,0,0)$
{2}	(11, 31, 20)	=	(11, 17, 20)	+	$14\cdot(0,1,0)$
{3}	(11, 17, 36)	=	(11, 17, 20)	+	$16 \cdot (0, 0, 1)$
$\{1, 2\}$	(19, 25, 20)	=	(11, 17, 20)	+	$8\cdot(1,1,0)$
{1,3}	(1, 17, 10)	=	(11, 17, 20)	—	$10 \cdot (1, 0, 1)$
{2,3}	(11, 35, 38)	=	(11, 17, 20)	+	$18 \cdot (0, 1, 1)$

イロト イポト イヨト イヨト

ŀ

Example

 $B_1 = \{\{1\}, \{2\}, \{3\}, \{1,2\}, \{1,3\}, \{2,3\}\}); B_2 = B_1 \cup \{1,2,3\}$ $\overrightarrow{p} = (11, 17, 20)$

・ コ ト ・ 雪 ト ・ 日 ト

Proof Outline.

- For play on one stack, assuming no such position exists leads to contradiction (legal move from losing position to losing position) as there are only finitely many moves.
- For play on a pair of stacks, a somewhat different argument is needed that does not generalize to three or more stacks.

< ロ > < 同 > < 回 > < 回 > < 回 > <

Thank You!

S. Heubach, M. Dufour A Generalization of the Nim and Wythoff games

ヘロト 人間 ト 人注 ト 人注 ト

Ð.

990