A Generalization of the Nim and Wythoff games

S. Heubach ${ }^{1} \quad$ M. Dufour ${ }^{2}$
${ }^{1}$ Dept. of Mathematics, California State University Los Angeles
${ }^{2}$ Dept. of Mathematics, Université du Québec à Montréal

March 10, 2011
42nd CGTC Conference, Boca Raton, FL

Nim and Wythoff

- Nim: Select one of the n stacks, take at least one token

- Wythoff: Take any number of tokens from one stack OR select the same number of tokens from both stacks

Generalization of Wythoff to n stacks

Wythoff: Take any number of tokens from one stack OR select the same number of tokens from both stacks

Generalization: Take any number of tokens from one stack OR

- take the same number of tokens from ALL stacks
- take the same number of tokens from any TWO stacks
- take the same number of tokens from any non-empty SUBSET of stacks

Generalized Wythoff on n stacks

Let $B \subseteq \mathcal{P}(\{1,2,3, \ldots, n\})$ with the following conditions:

1. $\varnothing \notin B$
2. $\{i\} \in B$ for $i=1, \ldots, n$.

A legal move in generalized Wythoff $\mathcal{G} \mathcal{W}_{n}(B)$ on n stacks induced by B consists of:

- Choose a set $A \in B$
- Remove the same number of tokens from each stack whose index is in A

The first player who cannot move loses.

Examples

- Nim: Select one of the n stacks, take at least one token

- Wythoff: Either take any number of tokens from one stack OR select the same number of tokens from both stacks

Examples

- Nim: Select one of the n stacks, take at least one token $B=\{\{1\},\{2\}, \ldots,\{n\}\}$

- Wythoff: Either take any number of tokens from one stack OR select the same number of tokens from both stacks

Examples

- Nim: Select one of the n stacks, take at least one token $B=\{\{1\},\{2\}, \ldots,\{n\}\}$

- Wythoff: Either take any number of tokens from one stack OR select the same number of tokens from both stacks

$B=\{\{1\},\{2\},\{1,2\}\}$

Goal

- Generalized Wythoff is a two-player impartial game
- All positions (configurations of stack heights) are either winning or losing

Goal: Determine the set of losing positions
Smaller Goal: Say something about the structure of the losing positions

Results for Wythoff

Let $\Phi=\frac{1+\sqrt{5}}{2}$. Then the set of losing positions is given by

$$
\mathcal{L}=\{(\lfloor n \cdot \Phi\rfloor,\lfloor n \cdot \Phi\rfloor+n) \mid n \geq 0\}
$$

They can be created recursively as follows:

- For a_{n}, find he smallest positive integer not yet used for a_{i} and b_{i}, $i<n$.
- $b_{n}=a_{n}+n$. Repeat...

n	0	1	2	3	4	5
a_{n}						
b_{n}						

Results for Wythoff

Let $\Phi=\frac{1+\sqrt{5}}{2}$. Then the set of losing positions is given by

$$
\mathcal{L}=\{(\lfloor n \cdot \Phi\rfloor,\lfloor n \cdot \Phi\rfloor+n) \mid n \geq 0\}
$$

They can be created recursively as follows:

- For a_{n}, find he smallest positive integer not yet used for a_{i} and b_{i}, $i<n$.
- $b_{n}=a_{n}+n$. Repeat...

n	0	1	2	3	4	5
a_{n}	0					
b_{n}	0					

Results for Wythoff

Let $\Phi=\frac{1+\sqrt{5}}{2}$. Then the set of losing positions is given by

$$
\mathcal{L}=\{(\lfloor n \cdot \Phi\rfloor,\lfloor n \cdot \Phi\rfloor+n) \mid n \geq 0\}
$$

They can be created recursively as follows:

- For a_{n}, find he smallest positive integer not yet used for a_{i} and b_{i}, $i<n$.
- $b_{n}=a_{n}+n$. Repeat...

n	0	1	2	3	4	5
a_{n}	0	1				
b_{n}	0					

Results for Wythoff

Let $\Phi=\frac{1+\sqrt{5}}{2}$. Then the set of losing positions is given by

$$
\mathcal{L}=\{(\lfloor n \cdot \Phi\rfloor,\lfloor n \cdot \Phi\rfloor+n) \mid n \geq 0\}
$$

They can be created recursively as follows:

- For a_{n}, find he smallest positive integer not yet used for a_{i} and b_{i}, $i<n$.
- $b_{n}=a_{n}+n$. Repeat...

n	0	1	2	3	4	5
a_{n}	0	1				
b_{n}	0	2				

Results for Wythoff

Let $\Phi=\frac{1+\sqrt{5}}{2}$. Then the set of losing positions is given by

$$
\mathcal{L}=\{(\lfloor n \cdot \Phi\rfloor,\lfloor n \cdot \Phi\rfloor+n) \mid n \geq 0\}
$$

They can be created recursively as follows:

- For a_{n}, find he smallest positive integer not yet used for a_{i} and b_{i}, $i<n$.
- $b_{n}=a_{n}+n$. Repeat...

n	0	1	2	3	4	5
a_{n}	0	1	3			
b_{n}	0	2				

Results for Wythoff

Let $\Phi=\frac{1+\sqrt{5}}{2}$. Then the set of losing positions is given by

$$
\mathcal{L}=\{(\lfloor n \cdot \Phi\rfloor,\lfloor n \cdot \Phi\rfloor+n) \mid n \geq 0\}
$$

They can be created recursively as follows:

- For a_{n}, find he smallest positive integer not yet used for a_{i} and b_{i}, $i<n$.
- $b_{n}=a_{n}+n$. Repeat...

n	0	1	2	3	4	5
a_{n}	0	1	3			
b_{n}	0	2	5			

Results for Wythoff

Let $\Phi=\frac{1+\sqrt{5}}{2}$. Then the set of losing positions is given by

$$
\mathcal{L}=\{(\lfloor n \cdot \Phi\rfloor,\lfloor n \cdot \Phi\rfloor+n) \mid n \geq 0\}
$$

They can be created recursively as follows:

- For a_{n}, find he smallest positive integer not yet used for a_{i} and b_{i}, $i<n$.
- $b_{n}=a_{n}+n$. Repeat...

n	0	1	2	3	4	5
a_{n}	0	1	3	4	6	8
b_{n}	0	2	5	7	10	13

Theorem

For the game of Wythoff, for any given position (a, b), there is exactly one a losing position of the form $(a, y),(x, b),(z, z+|b-a|)$ for some $x \geq 0, y \geq 0$, and $z \geq 0$.

This structural result can be visualized as follows:

Theorem

For the game of Wythoff, for any given position (a, b), there is exactly one a losing position of the form $(a, y),(x, b),(z, z+|b-a|)$ for some $x \geq 0, y \geq 0$, and $z \geq 0$.

This structural result can be visualized as follows:

Theorem

For the game of Wythoff, for any given position (a, b), there is exactly one a losing position of the form $(a, y),(x, b),(z, z+|b-a|)$ for some $x \geq 0, y \geq 0$, and $z \geq 0$.

This structural result can be visualized as follows:

Theorem

For the game of Wythoff, for any given position (a, b), there is exactly one a losing position of the form $(a, y),(x, b),(z, z+|b-a|)$ for some $x \geq 0, y \geq 0$, and $z \geq 0$.

This structural result can be visualized as follows:

Theorem

For the game of Wythoff, for any given position (a, b), there is exactly one a losing position of the form $(a, y),(x, b),(z, z+|b-a|)$ for some $x \geq 0, y \geq 0$, and $z \geq 0$.

This structural result can be visualized as follows:

Theorem

For the game of Wythoff, for any given position (a, b), there is exactly one a losing position of the form $(a, y),(x, b),(z, z+|b-a|)$ for some $x \geq 0, y \geq 0$, and $z \geq 0$.

This structural result can be visualized as follows:

Theorem

For the game of Wythoff, for any given position (a, b), there is exactly one a losing position of the form $(a, y),(x, b),(z, z+|b-a|)$ for some $x \geq 0, y \geq 0$, and $z \geq 0$.

This structural result can be visualized as follows:

Theorem

For the game of Wythoff, for any given position (a, b), there is exactly one a losing position of the form $(a, y),(x, b),(z, z+|b-a|)$ for some $x \geq 0, y \geq 0$, and $z \geq 0$.

This structural result can be visualized as follows: $(a, b)=(6,5)$

Theorem

For the game of Wythoff, for any given position (a, b), there is exactly one a losing position of the form $(a, y),(x, b),(z, z+|b-a|)$ for some $x \geq 0, y \geq 0$, and $z \geq 0$.

This structural result can be visualized as follows: $(a, b)=(6,5)$

Losing positions: $(6,10),(3,5)$, and $(2,1)$.

$$
\vec{e}_{i}=i^{\text {th }} \text { unit vector; } \vec{e}_{A}=\sum_{i \in A} \vec{e}_{i}
$$

Conjecture

In the game of generalized Wythoff $\mathcal{G} \mathcal{W}_{n}(B)$, for any position $\vec{p}=\left(p_{1}, p_{2}, \ldots, p_{n}\right)$ and any $A=\left\{i_{1}, i_{2}, \ldots, i_{k}\right\} \subseteq B$, there is a unique losing position of the form $\vec{p}+m \cdot \vec{e}_{A}$, where $m \geq-\min _{i \in A}\left\{p_{i}\right\}$.

Theorem

The conjecture is true for $|A| \leq 2$, that is, if play is either on a single stack or any pair of two stacks.

Example

$\mathcal{G} \mathcal{W}_{3}(\{\{1\},\{2\},\{3\},\{1,2\},\{1,3\},\{2,3\}\})$ - three stacks, with play on either a single or a pair of stacks. $\vec{p}=(11,17,20)$

A	\tilde{p}			
$\{1\}$	$(26,17,20)$	$=(11,17,20)$	$+15 \cdot(1,0,0)$	
$\{2\}$	$(11,31,20)$	$=(11,17,20)$	$+14 \cdot(0,1,0)$	
$\{3\}$	$(11,17,36)$	$=(11,17,20)$	$+16 \cdot(0,0,1)$	
$\{1,2\}$	$(19,25,20)$	$=(11,17,20)$	$+8 \cdot(1,1,0)$	
$\{1,3\}$	$(1,17,10)$	$=(11,17,20)$	$-10 \cdot(1,0,1)$	
$\{2,3\}$	$(11,35,38)$	$=(11,17,20)+18 \cdot(0,1,1)$		

Example

$$
\begin{aligned}
& \left.B_{1}=\{\{1\},\{2\},\{3\},\{1,2\},\{1,3\},\{2,3\}\}\right) ; B_{2}=B_{1} \cup\{1,2,3\} \\
& \vec{p}=(11,17,20)
\end{aligned}
$$

A	\tilde{p}_{1}	\tilde{p}_{2}
$\{1\}$	$(26,17,20)$	$(40,17,20)$
$\{2\}$	$(11,31,20)$	$(11,1,20)$
$\{3\}$	$(11,17,36)$	$(11,17,27)$
$\{1,2\}$	$(19,25,20)$	$(7,13,20)$
$\{1,3\}$	$(1,17,10)$	$(8,17,17)$
$\{2,3\}$	$(11,35,38)$	$(11,12,15)$
$\{1,2,3\}$	-	$(15,21,24)$

Proof Outline.

- For play on one stack, assuming no such position exists leads to contradiction (legal move from losing position to losing position) as there are only finitely many moves.
- For play on a pair of stacks, a somewhat different argument is needed that does not generalize to three or more stacks.

Thank You!

