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Nim and Wythoff

◮ Nim: Select one of the n stacks, take at least one token

◮ Wythoff: Take any number of tokens from one stack OR select

the same number of tokens from both stacks
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Generalization of Wythoff to n stacks

Wythoff: Take any number of tokens from one stack OR select the same

number of tokens from both stacks

Generalization: Take any number of tokens from one stack OR

◮ take the same number of tokens from ALL stacks

◮ take the same number of tokens from any TWO stacks

◮ take the same number of tokens from any non-empty SUBSET

of stacks
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Generalized Wythoff on n stacks

Let B ⊆ P({1, 2, 3, . . . , n}) with the following conditions:

1. ∅ /∈ B

2. {i} ∈ B for i = 1, . . . , n.

A legal move in generalized Wythoff GWn(B) on n stacks induced by

B consists of:

◮ Choose a set A ∈ B

◮ Remove the same number of tokens from each stack whose index

is in A

The first player who cannot move loses.
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Examples

◮ Nim: Select one of the n stacks, take at least one token

◮ Wythoff: Either take any number of tokens from one stack OR

select the same number of tokens from both stacks
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Examples

◮ Nim: Select one of the n stacks, take at least one token

B = {{1}, {2}, . . . , {n}}

◮ Wythoff: Either take any number of tokens from one stack OR

select the same number of tokens from both stacks
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Examples

◮ Nim: Select one of the n stacks, take at least one token

B = {{1}, {2}, . . . , {n}}

◮ Wythoff: Either take any number of tokens from one stack OR

select the same number of tokens from both stacks

B = {{1}, {2}, {1, 2}}
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Goal

◮ Generalized Wythoff is a two-player impartial game

◮ All positions (configurations of stack heights) are either winning

or losing

Goal: Determine the set of losing positions

Smaller Goal: Say something about the structure of the losing

positions
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Results for Wythoff

Let Φ = 1+
√

5
2

. Then the set of losing positions is given by

L = {(⌊n · Φ⌋, ⌊n · Φ⌋ + n)|n ≥ 0}

They can be created recursively as follows:

◮ For an, find he smallest positive integer not yet used for ai and bi,

i < n.

◮ bn = an + n. Repeat...

n 0 1 2 3 4 5

an

bn
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Results for Wythoff

Let Φ = 1+
√

5
2

. Then the set of losing positions is given by

L = {(⌊n · Φ⌋, ⌊n · Φ⌋ + n)|n ≥ 0}

They can be created recursively as follows:

◮ For an, find he smallest positive integer not yet used for ai and bi,

i < n.

◮ bn = an + n. Repeat...

n 0 1 2 3 4 5

an 0

bn 0
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Results for Wythoff

Let Φ = 1+
√

5
2

. Then the set of losing positions is given by

L = {(⌊n · Φ⌋, ⌊n · Φ⌋ + n)|n ≥ 0}

They can be created recursively as follows:

◮ For an, find he smallest positive integer not yet used for ai and bi,

i < n.

◮ bn = an + n. Repeat...

n 0 1 2 3 4 5

an 0 1

bn 0
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Results for Wythoff

Let Φ = 1+
√

5
2

. Then the set of losing positions is given by

L = {(⌊n · Φ⌋, ⌊n · Φ⌋ + n)|n ≥ 0}

They can be created recursively as follows:

◮ For an, find he smallest positive integer not yet used for ai and bi,

i < n.

◮ bn = an + n. Repeat...

n 0 1 2 3 4 5

an 0 1

bn 0 2
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Results for Wythoff

Let Φ = 1+
√

5
2

. Then the set of losing positions is given by

L = {(⌊n · Φ⌋, ⌊n · Φ⌋ + n)|n ≥ 0}

They can be created recursively as follows:

◮ For an, find he smallest positive integer not yet used for ai and bi,

i < n.

◮ bn = an + n. Repeat...

n 0 1 2 3 4 5

an 0 1 3

bn 0 2
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Results for Wythoff

Let Φ = 1+
√

5
2

. Then the set of losing positions is given by

L = {(⌊n · Φ⌋, ⌊n · Φ⌋ + n)|n ≥ 0}

They can be created recursively as follows:

◮ For an, find he smallest positive integer not yet used for ai and bi,

i < n.

◮ bn = an + n. Repeat...

n 0 1 2 3 4 5

an 0 1 3

bn 0 2 5
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Results for Wythoff

Let Φ = 1+
√

5
2

. Then the set of losing positions is given by

L = {(⌊n · Φ⌋, ⌊n · Φ⌋ + n)|n ≥ 0}

They can be created recursively as follows:

◮ For an, find he smallest positive integer not yet used for ai and bi,

i < n.

◮ bn = an + n. Repeat...

n 0 1 2 3 4 5

an 0 1 3 4 6 8

bn 0 2 5 7 10 13
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Theorem

For the game of Wythoff, for any given position (a, b), there is exactly

one a losing position of the form (a, y), (x, b), (z, z + |b − a|) for some

x ≥ 0, y ≥ 0, and z ≥ 0.

This structural result can be visualized as follows:

S. Heubach, M. Dufour A Generalization of the Nim and Wythoff games



Basics
Motivation

Result

Theorem

For the game of Wythoff, for any given position (a, b), there is exactly

one a losing position of the form (a, y), (x, b), (z, z + |b − a|) for some

x ≥ 0, y ≥ 0, and z ≥ 0.

This structural result can be visualized as follows:
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Theorem

For the game of Wythoff, for any given position (a, b), there is exactly

one a losing position of the form (a, y), (x, b), (z, z + |b − a|) for some

x ≥ 0, y ≥ 0, and z ≥ 0.

This structural result can be visualized as follows:
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Theorem

For the game of Wythoff, for any given position (a, b), there is exactly

one a losing position of the form (a, y), (x, b), (z, z + |b − a|) for some

x ≥ 0, y ≥ 0, and z ≥ 0.

This structural result can be visualized as follows:
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Theorem

For the game of Wythoff, for any given position (a, b), there is exactly

one a losing position of the form (a, y), (x, b), (z, z + |b − a|) for some

x ≥ 0, y ≥ 0, and z ≥ 0.

This structural result can be visualized as follows:

S. Heubach, M. Dufour A Generalization of the Nim and Wythoff games



Basics
Motivation

Result

Theorem

For the game of Wythoff, for any given position (a, b), there is exactly

one a losing position of the form (a, y), (x, b), (z, z + |b − a|) for some

x ≥ 0, y ≥ 0, and z ≥ 0.

This structural result can be visualized as follows:
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Theorem

For the game of Wythoff, for any given position (a, b), there is exactly

one a losing position of the form (a, y), (x, b), (z, z + |b − a|) for some

x ≥ 0, y ≥ 0, and z ≥ 0.

This structural result can be visualized as follows:
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Theorem

For the game of Wythoff, for any given position (a, b), there is exactly

one a losing position of the form (a, y), (x, b), (z, z + |b − a|) for some

x ≥ 0, y ≥ 0, and z ≥ 0.

This structural result can be visualized as follows: (a, b) = (6, 5)
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Theorem

For the game of Wythoff, for any given position (a, b), there is exactly

one a losing position of the form (a, y), (x, b), (z, z + |b − a|) for some

x ≥ 0, y ≥ 0, and z ≥ 0.

This structural result can be visualized as follows: (a, b) = (6, 5)

Losing positions: (6, 10), (3, 5), and (2, 1).
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−→e i = ith unit vector; −→e A =
∑

i∈A
−→e i

Conjecture

In the game of generalized Wythoff GWn(B), for any position
−→p = (p1, p2, . . . , pn) and any A = {i1, i2, . . . , ik} ⊆ B, there is a

unique losing position of the form −→p + m · −→e A, where

m ≥ −mini∈A{pi}.

Theorem

The conjecture is true for |A| ≤ 2, that is, if play is either on a single

stack or any pair of two stacks.
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Example

GW3({{1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}}) - three stacks, with play

on either a single or a pair of stacks. −→p = (11, 17, 20)

A p̃

{1} (26, 17, 20) = (11, 17, 20) + 15 · (1, 0, 0)
{2} (11, 31, 20) = (11, 17, 20) + 14 · (0, 1, 0)
{3} (11, 17, 36) = (11, 17, 20) + 16 · (0, 0, 1)
{1, 2} (19, 25, 20) = (11, 17, 20) + 8 · (1, 1, 0)
{1, 3} (1, 17, 10) = (11, 17, 20) − 10 · (1, 0, 1)
{2, 3} (11, 35, 38) = (11, 17, 20) + 18 · (0, 1, 1)
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B1 = {{1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}}); B2 = B1 ∪ {1, 2, 3}
−→p = (11, 17, 20)

A p̃1 p̃2

{1} (26, 17, 20) (40, 17, 20)
{2} (11, 31, 20) (11, 1, 20)
{3} (11, 17, 36) (11, 17, 27)
{1, 2} (19, 25, 20) (7, 13, 20)
{1, 3} (1, 17, 10) (8, 17, 17)
{2, 3} (11, 35, 38) (11, 12, 15)
{1, 2, 3} — (15, 21, 24)
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Proof Outline.

◮ For play on one stack, assuming no such position exists leads to

contradiction (legal move from losing position to losing position)

as there are only finitely many moves.

◮ For play on a pair of stacks, a somewhat different argument is

needed that does not generalize to three or more stacks.
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Thank You!
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