Circular consecutive choosability of k-choosable graphs

Daphne Liu * Serguei Norine ${ }^{\dagger}$ Zhishi Pan ${ }^{\ddagger}$ Xuding Zhu ${ }^{\S}$

April 11, 2010

Abstract

Let $S(r)$ denote a circle of circumference r. The circular consecutive choosability $c h_{c c}(G)$ of a graph G is the least real number t such that for any $r \geqslant \chi_{c}(G)$, if each vertex v is assigned a closed interval $L(v)$ of length t on $S(r)$, then there is a circular r-colouring f of G such that $f(v) \in L(v)$. We investigate, for a graph, the relations between its circular consecutive choosability and choosability. It is proved that for any positive integer k, if a graph G is k-choosable, then $c h_{c c}(G) \leqslant$ $k+1-1 / k$; moreover, the bound is sharp for $k \geqslant 3$. For $k=2$, it is proved that if G is 2 -choosable then $c h_{c c}(G) \leqslant 2$, while the equality holds if and only if G contains a cycle. In addition, we prove that there exist circular consecutive 2 -choosable graphs which are not 2 choosable. In particular, it is shown that $c h_{c c}(G)=2$ holds for all cycles and for $K_{2, n}$ with $n \geqslant 2$. On the other hand, we prove that $c h_{c c}(G)>2$ holds for many generalized theta graphs.

Keywords: choosability, circular consecutive choosability.

[^0]
1 Introduction

Choosability is a notion introduced independently by Vizing [9] in 1976 and Erdős, Rubin, and Taylor [2] in 1980, and has been widely studied ever since. Let G be a graph. A list assignment is a function L that assigns to each vertex with a set of permissible colours. We call G list L-colourable if there exists a proper colouring f such that $f(v) \in L(v)$ holds for every vertex v. A graph G is k-choosable if G is list L-colourable for every list L with $|L(v)|=k$ for all v. The choice number or choosability of G is defined as

$$
\operatorname{ch}(G)=\min \{k: G \text { is } k \text {-choosable }\} .
$$

Besides the choice number, several variations of choosability have also been studied in the literature. One of them is the consecutive choosability, introduced by Waters [10], in which the list assignment for each vertex is a set of consecutive integers. Another variation, called circular choosability, is motivated by the circular colouring of graphs.

For a positive real number r, let $S(r)$ denote the circle obtained from the interval $[0, r]$ by identifying 0 and r into a single point. For a real number t, denote by $[t]_{r}$ the remainder of t upon division by r. For $a, b \in S(r)$, the distance between a and b is $|a-b|_{r}=\min \{|a-b|, r-|a-b|\}$, and the intervals $[a, b]_{r}$ and $(a, b)_{r}$ are defined as $[a, b]_{r}=\left\{t \in S(r):[t-a]_{r} \leqslant[b-a]_{r}\right\}$ and $(a, b)_{r}=\left\{t \in[0, r): 0<[t-a]_{r}<[b-a]_{r}\right\}$. Suppose $G=(V, E)$ is a graph. A circular r-colouring of G is a mapping $f: V(G) \rightarrow S(r)$ such that the inequality $|f(u)-f(v)|_{r} \geqslant 1$ holds for every edge $u v$ of G. The circular chromatic number $\chi_{c}(G)$ of G is defined as the least r such that G admits a circular r-colouring. It is known that $\chi(G)=\left\lceil\chi_{c}(G)\right\rceil$ holds for every graph G. Thus, the circular chromatic number of G is a refinement of the chromatic number of G. Circular colouring has been studied extensively in the literature in the past two decades (see $[12,13]$ for surveys on this subject).

The concept of circular choosability of graphs was first studied in the article by Zhu [14]. Given a graph G and a positive real number r, an r-circular colour-list assignment for G is a function L that assigns to each vertex v a set $L(v)$ of disjoint union of closed intervals on $S(r)$. A circular L colouring of G is a circular r-colouring f of G such that $f(v) \in L(v)$ for every vertex v. For a real $t \leqslant r$, if for each v, the sum of the lengths of the disjoint intervals in $L(v)$ is equal to t, then L is called a (t, r)-circular colour-list
assignment. A graph G is circular t-choosable if G admits a circular L colouring for any r and for any (t, r)-circular colour-list assignment L. The circular choosability $\operatorname{ch}_{c}(G)$ of G (also known as the circular choice number or the circular list chromatic number) is defined as:

$$
c h_{c}(G)=\inf \{t: G \text { is circular } t \text {-choosable }\}
$$

Parallel to the investigation of the consecutive variation of choosability [10], it is natural to consider the consecutive variation of circular choosability in which the list of each vertex is a single closed interval on $S(r)$. This is a notion first introduced and studied by Lin et al. [5]. An r-circular consecutive colour-list assignment of G is a mapping L which assigns to each vertex v with a closed interval $L(v)$ on $S(r)$. If for every vertex v, the length of $L(v)$ is a fixed real t, then L is called a (t, r)-circular consecutive colour-list assignment of G. We call G circular consecutive (t, r)-choosable if G is circular L-colourable for every (t, r)-circular consecutive colour-list assignment L of G.

Notice that if $r<\chi_{c}(G)$, then G is not circular L-colourable for any (t, r)-circular colour-list assignment L. Therefore, we restrict our attention to only real numbers r with $r \geqslant \chi_{c}(G)$.

Definition 1. Suppose $r \geqslant \chi_{c}(G)$. The circular consecutive choosability of G with respect to r is defined as

$$
c h_{c c}^{r}(G)=\inf \{t: G \text { is circular consecutive }(t, r) \text {-choosable }\} .
$$

The circular consecutive choosability of G is defined as

$$
c h_{c c}(G)=\sup \left\{c h_{c c}^{r}(G): r \geqslant \chi_{c}(G)\right\} .
$$

Equivalently, ch $h_{c c}(G)$ is the infimum t such that G is circular consecutive (t, r)-choosable for any $r \geqslant \chi_{c}(G)$.

Circular colouring of graphs can be used as a model for periodic scheduling problems. Let each vertex of a graph G represent a job. Each job needs to be carried out once in every period of length r, and it takes one unit of time to finish each job once. A pair of adjacent vertices in G represent two jobs that one of them needs to be finished before the other can start (that is, the unit times to complete the two jobs are disjoint). A circular r-colouring of the graph G is a scheduling satisfying all the requirements above. One
may add another natural constraint to the scheduling problem, namely, the job represented by a vertex v can only be performed during a certain time interval $L(v)$ on a period of length r. Then such a scheduling corresponds to a consecutive circular list colouring of the graph.

An application of circular choosability of graphs is its use to the inductive proofs of circular colourability of graphs. To prove a graph G is circular r colourable, one may find a circular r-colouring f of $G-H$ for some induced subgraph H of G (by inductive hypothesis), then extend f to a circular r colouring for G. In the extension, the colours available to vertices of H are restricted by the already coloured vertices in $G-H$. Thus we are facing a circular list colouring problem. Such techniques have been used in the study of the circular chromatic number for planar graphs with large girth (cf. $[1,3,4,11]$).

In the inductive proof described above, if each vertex x of H is adjacent to only one coloured vertex in $G-H$, then the set of available colours to x is a closed interval on $S(r)$. Therefore we are facing a circular consecutive list colouring problem for H.

A circular consecutive list colouring is a special case of a circular list colouring in which the list of permissible colours for each vertex is a single closed interval. We may also view a circular colouring as a special list circular colouring of G in which each vertex is given the whole circle $S(r)$ as the set of permissible colours. In this sense, circular consecutive list colouring of a graph lies in between circular colouring and list circular colouring. Hence, the parameter $c h_{c c}(G)$ is naturally closely related to $\chi_{c}(G), c h_{c}(G)$, and $\operatorname{ch}(G)$. In [5], it was shown that if G is a graph on n vertices, then

$$
\chi(G)-1 \leqslant c h_{c c}(G) \leqslant 2 \chi_{c}(G)(1-1 / n)-1 .
$$

The values of $c h_{c c}(G)$ for complete graphs, trees, even cycles, and balanced complete bipartite graphs were determined; upper and lower bounds for $c h_{c c}(G)$ were given for some other graphs [5].

In this article, we investigate for a graph G, the relations between $c h_{c c}(G)$ and $\operatorname{ch}(G)$. In Section 2, we prove that if G is k-choosable, then $c h_{c c}(G) \leqslant$ $k+1-1 / k$. We then show that the bound is tight for $k \geqslant 3$: For any $k \geqslant 3$ and for any $\epsilon>0$, there is a k-choosable graph G with $c h_{c c}(G)>$ $k+1-1 / k-\epsilon$. For $k=2$, we improve this bound by showing, in Section 3, that every 2-choosable graph G has $c h_{c c}(G) \leqslant 2$. This bound is also tight as any 2 -choosable graph G containing a cycle has $c h_{c c}(G)=2$. Although the
result for $k=2$ implies that every 2-choosable graph is circular consecutive 2 -choosable, the converse of the statement is not true. In Section 4, we show that every odd cycle (which is not 2-choosable) is circular consecutive 2-choosable.

For positive integers a, b, and c, the theta graph $\theta_{a, b, c}$ is constructed by joining two vertices with three internally disjoint paths of lengths a, b, and c, respectively. The heart of a graph is obtained by sequentially deleting vertices of degree 1. A complete characterization of 2-choosable graphs is obtained in [2]:

Theorem 1. [2] A connected graph G is 2-choosable if and only if the heart of G is K_{1}, an even cycle, or $\theta_{2,2,2 n}$ for some $n \geqslant 1$.

A characterization of circular consecutive 2 -choosable graphs remains an open problem. Referring to Theorem 1, to further investigate this problem, it is natural to study the family of generalized theta graphs. A generalized theta graph $\theta_{k_{1}, k_{2}, \cdots, k_{n}}$ is obtained by joining two vertices by n internally disjoint paths of lengths $k_{1}, k_{2}, \cdots, k_{n}$. In Section 5 , we prove that $c h_{c c}(\underbrace{\theta_{2,2, \cdots, 2}}_{n})=2$ holds for any integer $n \geqslant 2$. On the other hand, we show that $c h_{c c}\left(\theta_{2,2,2, n}\right)>2$ for $n \neq 2,4,6$.

$2 k$-choosable graphs

We establish an upper bound of $c h_{c c}(G)$ for a graph G, in terms of the choosability of G (Corollary 3). Then we prove that for every $k \geqslant 3$, there exist k-choosable graphs whose circular consecutive choosability is arbitrarily close to the upper bound (Theorem 6).

Lemma 2. Let $k \geqslant 2$ be an integer and let G be a graph with $\operatorname{ch}(G)=k$ then $c h_{c c}^{r}(G) \leqslant k+(k-1)(r-\lfloor r\rfloor) /\lfloor r\rfloor$ for every $r \geqslant \chi_{c}(G)$.

Proof. Let $s=k+(k-1)(r-\lfloor r\rfloor) /\lfloor r\rfloor$, and let L be an s-circular consecutive list assignment of G with respect to r. For $l=0,1, \ldots\lfloor r\rfloor-1$ let $I_{l}=$ $[l r /\lfloor r\rfloor,(l+1) r /\lfloor r\rfloor-1]_{r}$ be an interval in $S(r)$. For every $v \in V(G)$ let $S(v)=\left\{j \mid I_{j} \cap L(v) \neq \emptyset\right\}$. Since $L(v)$ is an interval of length $s=k+$ $(k-1)(r-\lfloor r\rfloor) /\lfloor r\rfloor$, it follows that $|S(v)| \geqslant k$. As $\operatorname{ch}(G)=k$ it is possible to choose $k(v) \in S(v)$ for every $v \in V(G)$ so that $k(v) \neq k(w)$ for every $v w \in E(G)$. By the choice of $S(v)$ we can choose $f(v) \in I_{k(v)} \cap L(v)$ for every
$v \in V(G)$. It remains to note that for every $i, j \in\{0,1, \ldots,\lfloor r\rfloor-1\}, i \neq j$ and every $x \in I_{i} y \in I_{j}$ we have $|x-y|_{r} \geqslant 1$ and therefore $|f(v)-f(w)|_{r} \geqslant 1$ for every $v w \in E(G)$.

Corollary 3. Let $k \geqslant 2$ be an integer. If a graph G has list chromatic number k, then $c h_{c c}(G) \leqslant k+1-1 / k$.

Proof. If $\chi_{c}(G) \leqslant r \leqslant k$ then $c h_{c c}^{r}(G) \leqslant r \leqslant k$. If $r \geqslant k$ then $c h_{c c}^{r}(G) \leqslant$ $k+(k-1)(r-\lfloor r\rfloor) /\lfloor r\rfloor<k+(k-1) / k$ by Lemma 2.

We shall show that for $k \geqslant 3$, the upper bound given in Corollary 3 is tight. For this purpose, we need an alternate definition of $c h_{c c}(G)$ given in [5].

Given positive integers $p \geqslant 2 q$, a (p, q)-colouring of a graph G is a mapping $f: V(G) \rightarrow\{0,1, \cdots, p-1\}$ such that for any edge $x y$ of G, $q \leqslant|f(x)-f(y)| \leqslant p-q$. For any integer $a,[a]_{p}$ denotes the remainder of a divided by p. For $a, b \in\{0,1, \cdots, p-1\}$, the circular integral interval $[a, b]_{p}$ is defined as

$$
[a, b]_{p}=\{a, a+1, a+2, \cdots, b\} .
$$

Here the additions are modulo p. Suppose G is a graph and p, q are positive integers such that $p / q \geqslant \chi_{c}(G)$, and s is a positive integer. Let $l: V(G) \rightarrow$ $\{0,1, \cdots, p-1\}$ be a mapping. A (p, q)-colouring f of G is compatible with (l, s) if for any vertex $x, f(x) \in[l(x), l(x)+s-1]_{p}$. We say a graph G is circular consecutive $(p, q)-s$-choosable if for any mapping $l: V(G) \rightarrow$ $\{0,1, \cdots, p-1\}, G$ has a (p, q)-colouring f which is compatible with (l, s). We define the consecutive (p, q)-choosability of G as

$$
\tau_{p, q}(G)=\min \{s: G \text { is circular consecutive }(p, q)-s \text {-choosable }\}
$$

The following lemma is proved in [5].
Lemma 4. For any graph G and for any $r=p / q \geqslant \chi_{c}(G)$,

$$
\tau_{p, q}(G)=\left\lfloor c h_{c c}^{r}(G) \cdot q\right\rfloor+1
$$

Now we prove a technical lemma which is later used to lower bound the maximum circular consecutive choosability of graphs of fixed treewidth.

A graph G is called a k-tree if the vertices of G can be ordered as $v_{1}, v_{2}, \cdots, v_{n}$ in such a way that $\left\{v_{1}, v_{2}, \cdots, v_{k}\right\}$ induces a K_{k}, and for each $j \geqslant k+1$, the set $N^{+}\left(v_{j}\right)=\left\{v_{i}: i<j, v_{i} \sim v_{j}\right\}$ induces a K_{k}. The treewidth of a graph G is the minimum k such that G is a subgraph of a k-tree.

Lemma 5. Let $k \geqslant 2, p$ and q be positive integers such that $p / q \geqslant k$, and let s be a positive integer. Suppose that every graph G with treewidth at most $k-1$ is circular consecutive $(p, q)-s$-choosable. Then there exists a non-empty family \mathcal{S} of k-element subsets of $\{0,1, \ldots, p-1\}$ such that for every $S \in \mathcal{S}$ the following conditions hold:

1. for every distinct $x_{1}, x_{2} \in S$ we have $q \leqslant\left|x_{1}-x_{2}\right| \leqslant p-q$,
2. for every $X \subset S$ with $|X|=k-1$ and every $i \in\{0,1, \ldots, p-1\}$ there exists $S^{\prime} \in \mathcal{S}$ such that $S^{\prime}=X \cup\left\{x_{0}\right\}$ and $x_{0} \in[i, i+s-1]_{p}$.

Proof. For a graph H and a (p, q)-colouring f of H let $\mathcal{S}(H, f)$ denote the family of sets of colours of cliques of size k in H, and let $\xi(H, f)=|\mathcal{S}(H, f)|$. Suppose $l: V(H) \rightarrow\{0,1, \ldots, p-1\}$ and there is a (p, q)-colouring f of H compatible with (l, s). Then let
$\xi(H,(l, s))=\min \{\xi(H, f): f$ is a (p, q)-colouring of H compatible with $(l, s)\}$.
Choose a graph G of treewidth at most $k-1$ and a map $l: V(G) \rightarrow$ $\{0,1, \ldots, p-1\}$ so that $\xi(G,(l, s))$ is maximum over all graphs of treewidth at most $k-1$ and all maps l. Construct the graph G^{\prime} and a map $l^{\prime}: V\left(G^{\prime}\right) \rightarrow$ $\{0,1, \ldots, p-1\}$ as follows: For every clique $W \subseteq V(G)$ with $|W|=k-1$ and every $i \in\{0,1, \ldots, p-1\}$ create a vertex v_{W}^{i} of degree $k-1$ of G^{\prime} that is joined by edges to vertices of W and set $l^{\prime}\left(v_{W}^{i}\right)=i$. Let l^{\prime} be identical to l on $V(G)$. Then G^{\prime} has treewidth at most $k-1$. By the choice of G there exists a (p, q)-colouring f^{\prime} of G^{\prime} compatible with $\left(l^{\prime}, s\right)$ such that $\mathcal{S}\left(G^{\prime}, f^{\prime}\right)=\mathcal{S}\left(G, f^{\prime}\right)$.

We claim that $\mathcal{S}=\mathcal{S}\left(G, f^{\prime}\right)$ satisfies the requirements of the lemma. Clearly \mathcal{S} is non-empty. For every $S \in \mathcal{S}$ there exists a clique $U \subseteq V(G)$ such that $S=f^{\prime}(U)$. Therefore the first requirement is satisfied by the definition of a (p, q)-colouring. Similarly, for every $X \subset S$ with $|X|=k-1$ there exists a clique $W \subset U$ such that $|W|=k-1$ and $X=f^{\prime}(W)$. Then $S^{\prime}=f^{\prime}\left(W \cup\left\{v_{W}^{i}\right\}\right)$ satisfies the second requirement.

Theorem 6. For every $k \geqslant 3$ and $\varepsilon>0$ there exists a graph $G_{k, \varepsilon}$ such that $G_{k, \varepsilon}$ has treewidth at most $k-1$ and $c h_{c c}\left(G_{k, \varepsilon}\right)>k+1-1 / k-\varepsilon$.

Proof. We will show that for every positive integer n and every integer $k \geqslant 3$ there exists a graph $G_{k, n}$ of treewidth at most $k-1$ that is not circular consecutive $(p, q)-s$-choosable, where $p=n k(k+1)-2, q=n k$ and
$s=n k(k+1)-n-2$. By Lemma 4, for $r=k+1-2 / n k, c h_{c c}\left(G_{k, n}\right) \geqslant$ $c h_{c c}^{r}\left(G_{k, n}\right)>(p-1) / q=(n k(k+1)-n-2-1) / n k=k+(k-1) / k-3 / n k$.

Suppose, on the contrary, that for some n and some $k \geqslant 3$ every graph of treewidth at most $k-1$ is circular consecutive (p, q)-s-choosable. By Lemma 5 then there exists a family \mathcal{S} of k-element subsets of $\{0,1, \ldots, p-1\}$ satisfying the requirements of that lemma.

Choose $S=\left\{a_{1}, \ldots, a_{k}\right\} \in \mathcal{S}$ so that a_{1}, \ldots, a_{k} appear in $\{0,1, \ldots, p-1\}$ in circular order and $\left(\left[a_{2}-a_{1}\right]_{p},\left[a_{3}-a_{2}\right]_{p}, \ldots,\left[a_{k}-a_{k-1}\right]_{p}\right)$ is lexicographically maximum. Let $a_{k+1}=a_{1}$, by convention.

Consider $X=S-\left\{a_{2}\right\}$ and $i=a_{1}+\left\lceil\left(\left[a_{3}-a_{1}\right]_{p}+n\right) / 2\right\rceil$. Then by condition 2 in Lemma 5 there exists $S^{\prime} \in \mathcal{S}$ such that $S^{\prime}=X \cup\left\{a_{2}^{\prime}\right\}$ and $a_{2}^{\prime} \in[i, i+s-1]$. Note that $a_{2}^{\prime} \in\left[a_{1}, a_{3}\right]_{p}$. Otherwise $a_{2}^{\prime} \in\left[a_{l}, a_{l+1}\right]_{p}$ for some $l \geqslant 3$, and we obtain contradiction as follows,

$$
\begin{aligned}
p & =\sum_{j=1}^{l-1}\left[a_{j+1}-a_{j}\right]_{p}+\left[a_{2}^{\prime}-a_{l}\right]_{p}+\left[a_{l+1}-a_{2}^{\prime}\right]_{p}+\sum_{j=l+1}^{k}\left[a_{j+1}-a_{j}\right]_{p} \\
& \geqslant q(l-1+2+k-l)=q(k+1)=p+2
\end{aligned}
$$

Since $a_{2}^{\prime} \notin[i-n, i-1]$, it follows that

$$
\left|\left[a_{3}-a_{2}^{\prime}\right]_{p}-\left[a_{2}^{\prime}-a_{1}\right]_{p}\right| \geqslant n-1
$$

Hence
$\max \left\{\left[a_{3}-a_{2}^{\prime}\right]_{p},\left[a_{2}^{\prime}-a_{1}\right]_{p}\right\} \geqslant\left(\left[a_{3}-a_{2}^{\prime}\right]_{p}+\left[a_{2}^{\prime}-a_{1}\right]_{p}+n-1\right) / 2=\left(\left[a_{3}-a_{1}\right]_{p}+n-1\right) / 2$.
By the choice of S, we have

$$
\begin{aligned}
{\left[a_{2}-a_{1}\right]_{p} } & \geqslant \max \left\{\left[a_{2}^{\prime}-a_{1}\right]_{p},\left[a_{3}-a_{2}^{\prime}\right]_{p}\right\} \\
& \geqslant\left(\left[a_{3}-a_{1}\right]_{p}+n-1\right) / 2=\left(\left[a_{3}-a_{2}\right]_{p}+\left[a_{2}-a_{1}\right]_{p}+n-1\right) / 2
\end{aligned}
$$

Consequently,

$$
\left[a_{2}-a_{1}\right]_{p} \geqslant\left[a_{3}-a_{2}\right]_{p}+n-1
$$

By considering $X=S-\left\{a_{l}\right\}$ for $l \in\{3, \ldots, k\}$ and $i=a_{l-1}+q+n$, and using an argument similar to the above, we deduce $\left[a_{l}-a_{l-1}\right]_{p} \geqslant q+n$. A contradiction follows:

$$
\begin{aligned}
p & =\sum_{j=1}^{k}\left[a_{j+1}-a_{j}\right]_{p} \geqslant\left[a_{2}-a_{1}\right]_{p}+(q+n)(k-2)+\left[a_{1}-a_{k}\right]_{p} \\
& \geqslant q+n+n-1+(q+n)(k-2)+q=(q+n) k-1=p+1
\end{aligned}
$$

Since graphs of treewidth at most $(k-1)$ are k-choosable, Theorem 6 shows that the bound of Corollary 3 is tight.

Corollary 7. If G is a series-parallel graph, then $c h_{c c}(G) \leqslant 11 / 3$. For any $\epsilon>0$, there is a series-parallel graph G with $\operatorname{ch}_{c c}(G)>11 / 3-\epsilon$.

3 2-choosable graphs

We improve the bound in Corollary 3 for $k=2$. Precisely, we prove that if G is 2-choosable, then $c h_{c c}(G) \leqslant 2$. Combining this with a result in [5], the value of $c h_{c c}(G)$ can be determined in linear time for any 2-choosable graph G.

It is easy to see that G is circular consecutive 2 -choosable if and only if the heart of G is circular consecutive 2-choosable. The graphs K_{1} and even cycles are known [5] to be circular consecutive 2-choosable. To prove that every 2 -choosable graph is circular consecutive 2-choosable, by Theorem 1 it remains to show that for any positive integer $n, c h_{c c}\left(\theta_{2,2,2 n}\right)=2$, which we prove in the following result.

Theorem 8. Let $G=\theta_{2,2,2 n}$ with $V(G)=\left\{u, v, x_{1}, x_{2}, \cdots, x_{2 n+1}\right\}$ and $E(G)=\left\{x_{1} u, x_{1} v, x_{2 n+1} u, x_{2 n+1} v\right\} \cup\left\{x_{j} x_{j+1}: j=1,2, \cdots, 2 n\right\}$. Let $r \geqslant 2$ and $l: V(G) \rightarrow S(r)$ be an arbitrary mapping and let $L(x)=[l(x), l(x)+2]_{r}$. Then G is circular L-colourable.

To prove Theorem 8, we first establish a lemma concerning circular list colouring of paths. Given a path $P=\left(p_{0}, p_{1}, \ldots, p_{k}\right)$ and a list-assignment L that assigns to each vertex of P an interval of $S(r)$, we want to find possible colours that can be assigned to p_{0} and p_{k} in a circular L-colouring of P.

Theorem 9. Suppose $2<r<4$ and $k \geqslant\lceil 2 /(r-2)\rceil$ and $P=\left(p_{0}, p_{1}, \cdots, p_{k}\right)$ is a path of length k. Let $l: P \rightarrow S(r)$ be any mapping such that $\mid l\left(p_{i}\right)-$ $\left.l\left(p_{i+1}\right)\right|_{r} \geqslant 1$ for $0 \leqslant i \leqslant k-1$. Let $L\left(p_{i}\right)=\left[l\left(p_{i}\right), l\left(p_{i}\right)+2\right]_{r}$. Then the following hold:
(1) There exists a point $t \in L\left(p_{0}\right)$ such that for any $t^{\prime} \in L\left(p_{k}\right)$ there is a circular L-colouring f of P with $f\left(p_{0}\right)=t$ and $f\left(p_{k}\right)=t^{\prime}$.
(2) For any $0<\ell<2$, there exist an interval $X \subseteq L\left(p_{0}\right)$ of length ℓ and an interval $Y \subseteq L\left(p_{k}\right)$ of length $2-\ell$, such that for any $t \in X$ and for
any $t^{\prime} \in Y$ there is a circular L-colouring f of P with $f\left(p_{0}\right)=t$ and $f\left(p_{k}\right)=t^{\prime}$.

By taking ℓ to be real number approaching 0 , we can view statement (1) as a limit case of statement (2), where a single colour is viewed as an colour interval of length 0 . Nevertheless, we shall prove the two statements separately.

To prove Theorem 9, we first define some notation and present two lemmas. We say two colours $t, t^{\prime} \in S(r)$ are adjacent if $\left|t-t^{\prime}\right|_{r} \geqslant 1$. For $t \in S(r)$, denote by $N(t)$ the set of colours adjacent to t, namely $N(t)=[t+1, t-1]_{r}$. For a subset A of $S(r)$, let $N(A)=\cup_{t \in A} N(t)$.

Lemma 10. Suppose $I=[a, b]_{r}$ is an interval of $S(r)$ of length $\ell=[b-a]_{r}$. If $\ell \geqslant 2$, then $N(I)=S(r)$. Otherwise $N(I)=[a+1, b-1]_{r}$.

The proof of Lemma 10 is trivial and omitted.
Lemma 11. Suppose $2<r<4, a, b \in S(r)$ and $|a-b|_{r} \geqslant 1$. If $I=$ $[s, s+\ell]_{r} \subseteq[b, b+2]_{r}$, then the following hold.
(1) If $\ell \geqslant r-2$, then there is an interval I^{\prime} of length $\ell-(r-2)$ such that $I^{\prime} \subseteq[a, a+2]_{r}$ and $I=N\left(I^{\prime}\right)$.
(2) If $\ell \leqslant r-2$, then there is a colour $t^{\prime} \in[a, a+2]_{r}$ such that $I \subseteq N\left(t^{\prime}\right)$.

Proof. First we observe that if $\ell=r-2$, then by (1), there is an interval I^{\prime} of $[a, a+2]_{r}$ of length 0 such that $I=N\left(I^{\prime}\right)$. Here by an interval of length 0 we mean a single point. So in this case, the conclusions in (1) and (2) coincide.
(1): Assume $\ell \geqslant r-2$. Let $I^{\prime}=[s-1, s-1+\ell-(r-2)]_{r}$. By Lemma $10, N\left(I^{\prime}\right)=I=[s, s+\ell]_{r}=I$. Now we show that $I^{\prime} \subseteq[a, a+2]_{r}$.

First we show that

$$
I^{\prime}=[s-1, s-1+\ell-(r-2)]_{r} \subseteq[b-1, b+3]_{r} .
$$

Assume $t \in[s-1, s-1+\ell-(r-2)]_{r}$. Then $[t-(s-1)]_{r} \leqslant \ell-(r-2)$. We need to show that $[t-(b-1)]_{r} \leqslant[b+3-(b-1)]_{r}=4-r$. Observe that

$$
[t-(b-1)]_{r}=[t-(s-1)+s-b]_{r}=\left[[t-s+1]_{r}+[s-b]_{r}\right]_{r} .
$$

Because $[s, s+\ell]_{r} \subseteq[b, b+2]_{r}$, we conclude that $[s-b]_{r} \leqslant 2-\ell$. Hence
$\left[[t-s+1]_{r}+[s-b]_{r}\right]_{r}=[t-s+1]_{r}+[s-b]_{r} \leqslant \ell-(r-2)+2-\ell=4-r$.

It remains to show that $[b-1, b+3]_{r} \subseteq[a, a+2]_{r}$. If $t \in[b-1, b+3]_{r}$, then $[t-b+1]_{r} \leqslant 4-r$. Because $1 \leqslant[b-a]_{r} \leqslant r-1$, we have $[b-1-a]_{r} \leqslant r-2$. It follows that

$$
\begin{aligned}
{[t-a]_{r} } & =[t-b+1+b-1-a]_{r} \\
& =\left[[t-b+1]_{r}+[b-1-a]_{r}\right]_{r} \leqslant 4-r+r-2=2 .
\end{aligned}
$$

Therefore $t \in[a, a+2]_{r}$.
(2): Assume $\ell \leqslant r-2$. Let $I^{\prime \prime}$ be an interval contained in $[b, b+2]_{r}$ of length $r-2$ such that $I \subseteq I^{\prime \prime}$. Apply (1) to $I^{\prime \prime}$, we conclude that there exists $t \in[a, a+2]_{r}$ such that $I^{\prime \prime}=N(t)$. Hence $I \subseteq N(t)$.

Proof of Theorem 9 We first consider the case that $k=\lceil 2 /(r-2)\rceil$.
(1) Let $I_{k}=L\left(p_{k}\right)$. By repeatedly applying Lemma 11, we conclude that there are intervals $I_{k-1}, I_{k-2}, \cdots, I_{1}$ such that

- I_{j} is contained in $L\left(p_{j}\right)$.
- I_{j} has length $2-(k-j)(r-2)$.
- $I_{j+1}=N\left(I_{j}\right)$.

Since I_{1} has length $2-(k-1)(r-2) \leqslant r-2$, apply Lemma 11 again, there is a colour $t \in L\left(p_{0}\right)$ such that $I_{1} \subseteq N(t)$.

For any $t^{\prime} \in L\left(p_{k}\right)=I_{k}$, there are colours $c_{j} \in I_{j}$ for $j=k-1, k-2, \cdots, 1$ such that $t^{\prime} \in N\left(c_{k-1}\right)$ and $c_{j+1} \in N\left(c_{j}\right)$ for $j=k-2, k-3, \cdots, 1$ and $c_{1} \in N(t)$. Let $f\left(p_{0}\right)=t, f\left(p_{k}\right)=t^{\prime}$ and $f\left(p_{j}\right)=c_{j}$ for $j=1,2, \cdots, k-1$. Then f is a circular L-colouring of P_{k} satisfying the requirements of the theorem. This completes the proof of (1).
(2) Let $q=\lceil\ell /(r-2)\rceil$. Similarly as in the proof of (1), by repeatedly applying Lemma 11, we have the following:

- For $j=k, k-1, k-2, \cdots, q$, there are intervals $I_{j} \subseteq L\left(p_{j}\right)$ of length $2-(k-j)(r-2)$ and $I_{j+1}=N\left(I_{j}\right)$ for $j=k-1, k-2, \cdots, q$.
- For $j=0,1,2, \cdots, q$, there are intervals $J_{j} \subseteq L\left(p_{j}\right)$ of length $2-j(r-2)$ with $N\left(J_{j}\right)=J_{j-1}$ for $j=1,2, \cdots, q$.

Let

$$
\delta=q(r-2)-\ell \text { and } \epsilon=(k-q)(r-2)+\ell-2 .
$$

Let J_{q}^{\prime} be a closed interval contained in $L\left(p_{q}\right)$ of length $2-q(r-2)+\delta$ containing J_{q}, and let I_{q}^{\prime} be a closed interval contained in $L\left(p_{q}\right)$ of length $2-(k-q)(r-2)+\epsilon$ containing I_{q}. As the sum of the lengths of J_{q}^{\prime} and I_{q}^{\prime} is equal to 2 and both are contained in $L\left(p_{q}\right)$ which is an interval of length $2, I_{q}^{\prime} \cap J_{q}^{\prime} \neq \emptyset$.

Let $s \in I_{q}^{\prime} \cap J_{q}^{\prime}$. Since $I_{q} \subseteq I_{q}^{\prime}$ and I_{q} has length $2-(k-q)(r-2)$, there is a colour $s^{\prime} \in I_{q}$ such that $\left|s-s^{\prime}\right|_{r} \leqslant \epsilon$. Thus $N(s)$ is an interval which is a shift of the interval $N\left(s^{\prime}\right)$ by a distance $\left|s-s^{\prime}\right|_{r} \leqslant \epsilon$. Since $N\left(s^{\prime}\right) \cap I_{q+1}=N\left(s^{\prime}\right)$, which is an interval of length $r-2$, it follows that $I_{q+1}^{\prime}=N(s) \cap I_{q+1}$ is an interval of length at least $r-2-\epsilon$. For $j=q+2, q+3, \cdots, k$, let $I_{j}^{\prime}=N\left(I_{j-1}^{\prime}\right)$, then $I_{j}^{\prime} \subseteq I_{j} \subseteq L\left(p_{j}\right)$ and has length at least $(j-q)(r-2)-\epsilon$. In particular, $I_{k}^{\prime} \subseteq L\left(p_{k}\right)$ has length at least $(k-q)(r-2)-\epsilon=2-\ell$. Similarly, let $J_{q-1}^{\prime}=N(s) \cap J_{q-1}$ for $j=q-2, q-3, \cdots, 1$, let $J_{j}^{\prime}=N\left(J_{j+1}^{\prime}\right)$. We have $J_{j}^{\prime} \subseteq L\left(p_{j}\right)$ and J_{0}^{\prime} has length $q(r-2)-\delta=\ell$.

Let $X=J_{0}^{\prime}$ and $Y=I_{k}^{\prime}$. For $t \in X$ and $t^{\prime} \in Y$, there are colours $c_{j} \in I_{j}^{\prime}$ for $j=k-1, k-2, \cdots, q+1$ such that $t^{\prime} \in N\left(c_{k-1}\right)$ and $c_{j} \in N\left(c_{j-1}\right)$ for $j=$ $k-1, k-2, \cdots, q+1$. Similarly, there are colours $c_{j} \in J_{j}^{\prime}$ for $j=1,2, \cdots, q-1$ such that $t \in N\left(c_{1}\right)$ and $c_{j+1} \in N\left(c_{j}\right)$ for $j=1,2, \cdots, q-2$. Then $f\left(p_{k}\right)=$ $t^{\prime}, f\left(p_{0}\right)=t, f\left(p_{q}\right)=s$ and $f\left(p_{j}\right)=c_{j}$ for $j=1,2, \cdots, q-1, q+1, \cdots, k-1$ is a circular L-colouring f with $f\left(p_{0}\right)=t$ and $f\left(p_{k}\right)=t^{\prime}$.

Assume Theorem 9 holds for k. To prove that it also holds for $P_{k+1}=$ $\left(p_{0}, p_{1}, \cdots, p_{k}, p_{k+1}\right)$, we apply the theorem to the path $\left(p_{0}, p_{1}, \cdots, p_{k}\right)$ to obtain the required sets X and Y, and then let $Y^{\prime}=Y+l\left(p_{k+1}\right)-l\left(p_{k}\right)=$ $\left\{t+l\left(p_{k+1}\right)-l\left(p_{k}\right): t \in Y\right\}$. Then X, Y^{\prime} are the required sets for statement (2). Statement (1) is proved in the same way.

Now we are ready to prove Theorem 8. Assume Theorem 8 is not true. Let n be the smallest integer for which there is a real number $r \geqslant 2$, a $(2, r)$-circular consecutive colour-list assignment L of G, such that G is not circular L-colourable. We shall derive some properties of the list assignment L that eventually lead to a contradiction.

It is known [5] that we only need to consider those r with $2 \leqslant r<4$. As $\theta_{2,2,2}=K_{2,3}$, we know that $\theta_{2,2,2}$ is circular consecutive 2-choosable (see next section for a proof showing that $K_{2, n}$ are circular consecutive 2-choosable). In the following, we assume that $2 \leqslant r<4$ and $n \geqslant 2$.

If $r \leqslant 2+2 / n$, then $L\left(x_{1}\right) \cap L\left(x_{3}\right) \cap \cdots \cap L\left(x_{2 n+1}\right) \neq \emptyset$. Let $t \in$ $L\left(x_{1}\right) \cap L\left(x_{3}\right) \cap \cdots L\left(x_{2 n+1}\right)$. Let $f\left(x_{2 j+1}\right)=t$ for $j=0,1, \cdots, n$. For
$w \in\left\{u, v, x_{2}, x_{4}, \cdots, x_{2 n}\right\}$, let $f(w)$ be any colour from the nonempty set $L(w)-(t-1, t+1)_{r}$. Then f is an L-colouring of G. In the following, we assume that $r>2+2 / n$.

Lemma 12. For any $j \in\{2,3, \cdots, 2 n-1\}, l\left(x_{j}\right)$ and $l\left(x_{j+1}\right)$ are adjacent, i.e., $\left|l\left(x_{j}\right)-l\left(x_{j+1}\right)\right|_{r} \geqslant 1$.

Proof. Assume to the contrary that there exists an index $j \in\{2,3, \cdots, 2 n-$ $1\}$ such that $\left|l\left(x_{j}\right)-l\left(x_{j+1}\right)\right|_{r}<1$. Delete two vertices x_{j}, x_{j+1} and add an edge $x_{j-1} x_{j+2}$. The resulting graph G^{\prime} is $\theta_{2,2,2(n-1)}$. By the minimality of G, there exists a circular L-colouring f for G^{\prime}. We shall extend f to a circular L-colouring of G, by finding appropriate colours for x_{j} and x_{j+1}.

Let $a=f\left(x_{j-1}\right)$ and $b=f\left(x_{j+2}\right)$. If $b \in L\left(x_{j}\right)$, then let $f\left(x_{j}\right)=b$ and let $f\left(x_{j+1}\right)$ be any colour from the non-empty set $L\left(x_{j+1}\right)-(b-1, b+1)_{r}$. Then f is a circular L-colouring of G. Thus we may assume that $b \notin L\left(x_{j}\right)$. Similarly, we may assume that $a \notin L\left(x_{j+1}\right)$.

Since $r<4$, either $a+1 \in L\left(x_{j}\right)$ or $a-1 \in L\left(x_{j}\right)$. By symmetry, we may assume that $a+1 \in L\left(x_{j}\right)$. Similarly, either $b+1 \in L\left(x_{j+1}\right)$ or $b-1 \in$ $L\left(x_{j+1}\right)$. If $b+1 \in L\left(x_{j+1}\right)$, then let $f\left(x_{j}\right)=a+1$ and $f\left(x_{j+1}\right)=b+1$. Then f is a circular L-colouring of G. Thus we may assume that $b+1 \notin L\left(x_{j+1}\right)$ and hence $b-1 \in L\left(x_{j+1}\right)$. Moreover, we may also assume that $a-1 \notin L\left(x_{j}\right)$, for otherwise, by letting $f\left(x_{j}\right)=a-1$ and $f\left(x_{j+1}\right)=b-1$ we obtain a circular L-colouring of G. Let $f\left(x_{j}\right)=l\left(x_{j}\right)+2$ and $f\left(x_{j+1}\right)=l\left(x_{j}\right)+1$. We shall show that f is a circular L-colouring of G.

Since $a+1 \in L\left(x_{j}\right)$ and $a-1 \notin L\left(x_{j}\right)$, it follows that $[a-1, a]_{r} \subseteq$ $\left[l\left(x_{j}\right)+2, a\right]_{r}$ and $[a, a+1]_{r} \subseteq\left[a, l\left(x_{j}\right)+2\right]_{r}$. Hence $\left[a-\left(l\left(x_{j}\right)+2\right)\right]_{r} \geqslant 1$ and $\left[l\left(x_{j}\right)+2-a\right]_{r} \geqslant 1$. I.e., $\left|f\left(x_{j}\right)-f\left(x_{j-1}\right)\right|_{r} \geqslant 1$. Since $\left|l\left(x_{j}\right)-l\left(x_{j+1}\right)\right|_{r}<1$, it follows that $l\left(x_{j}\right)+1 \in L\left(x_{j+1}\right)$. I.e., $f\left(x_{j+1}\right) \in L\left(x_{j+1}\right)$. By definition, $\left|f\left(x_{j}\right)-f\left(x_{j+1}\right)\right|_{r}=1$. Since $b \notin L\left(x_{j}\right)$, we have $\left|b-\left(l\left(x_{j}\right)+1\right)\right|_{r} \geqslant 1$. I.e., $\left|f\left(x_{j+1}\right)-f\left(x_{j+2}\right)\right|_{r} \geqslant 1$. This proves that f is indeed a circular L-colouring of G.

Let $l\left(x_{1}\right)=a, l\left(x_{2 n+1}\right)=b, l(u)=c$ and $l(v)=d$. Without loss of generality, we may assume that

$$
c \in L(v)=[d, d+2]_{r} .
$$

Lemma 13. Under the above assumption, we have $d \notin[c, c+2]_{r}$.

Proof. Assume to the contrary that $c \in[d, d+2]_{r}$ and $d \in[c, c+2]_{r}$. By our assumption, $r \geqslant 2+2 / n$. By Theorem 9, there is a colour $t \in L\left(x_{2}\right)$ such that for any $t^{\prime} \in L\left(x_{2 n}\right)$, there is a circular L-colouring f of the path $\left(x_{2}, x_{3}, \cdots, x_{2 n}\right)$ with $f\left(x_{2}\right)=t$ and $f\left(x_{2 n}\right)=t^{\prime}$.

We construct a circular L-colouring c of G as follows: Let $c\left(x_{2}\right)=t$, and let $c\left(x_{1}\right) \in L\left(x_{1}\right)$ be any colour adjacent to t. Since $c \in[d, d+2]_{r}$ and $d \in[c, c+2]_{r}$, we have

$$
[c, c+2]_{r} \cap[d, d+2]_{r}=[c, d+2]_{r} \cup[d, c+2]_{r} .
$$

As $N\left([c, d+2]_{r}\right)=[c+1, d+1]_{r}$ and $N\left([d, c+2]_{r}\right)=[d+1, c+1]_{r}$, it implies that

$$
N\left([c, d+2]_{r} \cup[d, c+2]_{r}\right)=S(r) .
$$

In particular, $c\left(x_{1}\right) \in N\left([c, c+2]_{r} \cap[d, d+2]_{r}\right)$. Let $s \in[c, c+2]_{r} \cap[d, d+2]_{r}$ be a colour adjacent to t and let $t^{*} \in L\left(x_{2 n+1}\right)$ be any colour adjacent to s. Let $c(u)=c(v)=s$ and let $c\left(x_{2 n+1}\right)=t^{*}$. Let $t^{\prime} \in L\left(x_{2 n}\right)$ be any colour adjacent to t^{*}. By the previous paragraph, c can be extended to a circular L-colouring of the path $\left(x_{2}, x_{3}, \cdots, x_{2 n}\right)$.

Lemma 14. $N\left([c, d+2]_{r}\right) \cup(N(c+2) \cap N(d))=S(r)$.
Proof. By definition, $N\left([c, d+2]_{r}\right)=[c+1, d+1]_{r}$. Since $d \notin[c, c+2]_{r}$, we have $N(c+2) \cap N(d)=[c+3, c+1]_{r} \cap[d+1, d-1]_{r}=[d+1, c+1]_{r}$.

Proof of Theorem 8 Assume first that $b \notin(c+1, d-1)_{r}$. By Theorem 9 , there is a colour $t \in L\left(x_{1}\right)$ such that for any $t^{\prime} \in L\left(x_{2 n+1}\right)$, there is a circular L-colouring f of the path $\left(x_{1}, x_{2}, x_{3}, \cdots, x_{2 n+1}\right)$ with $f\left(x_{1}\right)=t$ and $f\left(x_{2 n+1}\right)=t^{\prime}$. We construct a circular L-colouring c of G as follows: Let $c\left(x_{1}\right)=t$. If $[c, d+2]_{r} \cap N(t) \neq \emptyset$ then let $c(u)=c(v)=s$ for some $s \in[c, d+2]_{r} \cap N(t)$, let $c\left(x_{2 n+1}\right)=t^{\prime}$, where $t^{\prime} \in L\left(x_{2 n+1}\right)$ is any colour adjacent to s. By the choice of t, c can be extended to a circular L-colouring of the path $\left(x_{1}, x_{2}, x_{3}, \cdots, x_{2 n+1}\right)$. If $[c, d+2]_{r} \cap N(t)=\emptyset$, then $t \notin N\left([c, d+2]_{r}\right)$. By Lemma 14, t is adjacent to both $c+2$ and d. In this case, let $c(u)=c+2, c(v)=d$. Since $b \notin(c+1, d-1)_{r}$, it follows that $[b, b+2]_{r} \cap[d+1, c+1]_{r} \neq \emptyset$. Let $t^{\prime} \in[b, b+2]_{r} \cap[d+1, c+1]_{r}$. Then t^{\prime} is adjacent to both $c+2$ and d. Let $c\left(x_{2 n+1}\right)=t^{\prime}$. By the choice of t, c can be extended to a circular L-colouring of the path $\left(x_{1}, x_{2}, x_{3}, \cdots, x_{2 n+1}\right)$.

Assume next that $b \in(c+1, d-1)_{r}$. Then $[b, b+2]_{r} \cap(d+1, c+1)_{r}=\emptyset$. This implies that for any $t \in[b, b+2]_{r}, N(t) \cap[c, d+2]_{r} \neq \emptyset$. By Theorem

9 , there is a colour $t \in L\left(x_{2 n+1}\right)$ such that for any $t^{\prime} \in L\left(x_{1}\right)$, there is a circular L-colouring f of the path $\left(x_{1}, x_{2}, x_{3}, \cdots, x_{2 n}\right)$ with $f\left(x_{1}\right)=t^{\prime}$ and $f\left(x_{2 n+1}\right)=t$.

Let $s \in[c, d+2]_{r} \cap N(t)$ be a colour adjacent to t and let $t^{\prime} \in L\left(x_{1}\right)$ be any colour adjacent to s. Let $c(u)=c(v)=s$ and let $c\left(x_{1}\right)=t^{\prime}$ and $c\left(x_{2 n+1}\right)=t$. Then c can be extended to a circular L-colouring of the path $\left(x_{1}, x_{2}, x_{3}, \cdots, x_{2 n+1}\right)$. This completes the proof of Theorem 8.

It is known [5] that if G contains a cycle, then $c h_{c c}(G) \geqslant 2$. If G is an n-vertex tree, then $c h_{c c}(G)=2\left(1-\frac{1}{n}\right)$. Hence, for a connected 2-choosable graph G on n vertices, to determine the exact value of $c h_{c c}(G)$ it suffices to determine whether G contains a cycle or not. That is, if G contains a cycle then $c h_{c c}(G)=2$; otherwise, $c h_{c c}(G)=2-\frac{2}{n}$. In conclusion, for 2-choosable graphs $G, c h_{c c}(G)$ can be determined in linear time.

4 Cycles

Although every 2-choosable graph is circular consecutive 2-choosable, the converse is not true. For example, by Theorem $1, K_{2, n}$ is not 2 -choosable for $n \geqslant 4$. However, it is easy to show that $K_{2, n}$ is circular consecutive 2 -choosable: We only need to consider r with $2 \leqslant r<4$. Denote $V\left(K_{2, n}\right)=$ $\{u, v\} \cup\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$. Let L be a $(2, r)$-circular consecutive colour-list assignment for $K_{2, n}$. Then $L(u) \cap L(v) \neq \emptyset$. Let $f(u)=f(v)=t \in$ $L(u) \cap L(v)$, and let $f\left(x_{i}\right) \in L\left(x_{i}\right) \backslash(t-1, t+1)_{r}$. Then f is a circular L-colouring of $K_{2, n}$.

The following is an open problem:
Question 1. Which are the graphs G with $c h_{c c}(G) \leqslant 2$?
As discussed in the previous paragraph, to investigate Question 1 it suffices to consider graphs without vertices of degree 1 . So far, there are only two families of graphs that are known to have a positive answer to Question 1. Besides $K_{2, n}$ discussed in the previous paragraph, cycles is the other known family of such graphs, which we prove in the next result.

Theorem 15. For any integer $n \geqslant 3, c h_{c c}\left(C_{n}\right)=2$.
The rest of this section is devoted to the proof of Theorem 15. It is proved in [5] that for any $n \geqslant 3, c h_{c c}\left(C_{n}\right) \geqslant 2$, and if n is even or $n=3$ then the equality holds. To prove Theorem 15 , it suffices to show that for
any $k \geqslant 2$, for any $r \geqslant 2+1 / k, c h_{c c}^{r}\left(C_{2 k+1}\right) \leqslant 2$. To this end, the following lemma is established. Let L be a 2 -circular-consecutive-list assignment for C_{n} with respect to r, where $V\left(C_{n}\right)=\left\{v_{0}, v_{2}, \cdots, v_{n-1}\right\}, v_{i} \sim v_{i+1}$. We need to find a circular L-colouring for C_{n}. Let $L\left(v_{i}\right)=\left[a_{i}, a_{i}+2\right]_{r}$.

Lemma 16. If $r \geqslant \chi_{c}\left(C_{n-2}\right)$ and $c h_{c c}^{r}\left(C_{n-2}\right) \leqslant 2$, then $c h_{c c}^{r}\left(C_{n}\right) \leqslant 2$.
Proof. Assume $c h_{c c}^{r}\left(C_{n-2}\right) \leqslant 2$ for some $r \geqslant \chi_{c}\left(C_{n-2}\right)$. If $\left|a_{i}-a_{i+1}\right|_{r} \geqslant 1$ for all i, then $f\left(v_{i}\right)=a_{i}, 0 \leqslant i \leqslant n-1$, is a circular L-colouring for C_{n}. Hence, assume without loss of generality, $a_{n-1}=0$ and $a_{0}=\varepsilon$ for some $0 \leqslant \varepsilon<1$. Let G^{\prime} be an $(n-2)$-cycle with the vertex set $\left\{v_{1}, v_{2}, \cdots, v_{n-2}\right\}$ where $v_{1} v_{n-2}, v_{i} v_{i+1} \in E\left(G^{\prime}\right)$ for $i=1,2, \cdots, n-3$. Restricting L to $V\left(G^{\prime}\right)$ is indeed a 2-circular-consecutive-list assignment for C_{n-2} with respect to r. Since $c h_{c c}^{r}\left(C_{n-2}\right) \leqslant 2$, there exists a circular L-colouring f for G^{\prime}. It suffices to extend f to C_{n} by finding $f\left(v_{0}\right) \in L\left(v_{0}\right)$ and $f\left(v_{n-1}\right) \in L\left(v_{n-1}\right)$ such that $\left|f\left(v_{0}\right)-f\left(v_{n-1}\right)\right|_{r} \geqslant 1,\left|f\left(v_{0}\right)-f\left(v_{1}\right)\right|_{r} \geqslant 1$ and $\left|f\left(v_{n-2}\right)-f\left(v_{n-1}\right)\right|_{r} \geqslant 1$.

Suppose $f\left(v_{n-2}\right) \in L\left(v_{0}\right)$. Let $f\left(v_{0}\right)=f\left(v_{n-2}\right)$. Since $L\left(v_{n-1}\right)$ has length 2, there exists $j \in L\left(v_{n-1}\right)$ with $\left|j-f\left(v_{n-2}\right)\right|_{r} \geqslant 1$. Let $f\left(v_{n-1}\right)=j$. Then f is a circular L-colouring for C_{n}. Similarly, the result follows if $f\left(v_{1}\right) \in L\left(v_{n-1}\right)$.

It remains to consider that $f\left(v_{n-2}\right) \notin L\left(v_{0}\right)$ and $f\left(v_{1}\right) \notin L\left(v_{n-1}\right)$. Denote $x_{1}=f\left(v_{1}\right)+1, x_{2}=f\left(v_{1}\right)-1, y_{1}=f\left(v_{n-2}\right)+1$ and $y_{2}=f\left(v_{n-2}\right)-1$. Then $\left|x_{i}-y_{i}\right|_{r} \geqslant 1$ for $i=1,2$. If $x_{1}, x_{2} \notin L\left(v_{0}\right)$, the result follows by letting $f\left(v_{0}\right)=\varepsilon$ and $f\left(v_{n-1}\right)=1+\varepsilon$. Similarly, it holds if $y_{1}, y_{2} \notin L\left(v_{n-1}\right)$. If $x_{1} \in L\left(v_{0}\right)$ and $y_{1} \in L\left(v_{n-1}\right)$, we let $f\left(v_{0}\right)=x_{1}$ and $f\left(v_{n-1}\right)=y_{1}$. By symmetry, it remains to consider that $x_{1} \in L\left(v_{0}\right), y_{1} \notin L\left(v_{n-1}\right), x_{2} \notin L\left(v_{0}\right)$ and $y_{2} \in L\left(v_{n-1}\right)$. For this case, let $f\left(v_{0}\right)=2$ and $f\left(v_{n-1}\right)=1$. It is straightforward to check that each f defined above is a circular L-colouring for C_{n}. We leave the details to the readers. This completes the proof of Lemma 16.

It is known [5] that for $r \geqslant 3, c h_{c c}^{r}\left(C_{3}\right)=2$. To complete the proof of Theorem 15, by Lemma 16, it remains to show that if $n=2 k+1 \geqslant 5$ and $2+\frac{1}{k} \leqslant r<2+\frac{1}{k-1}$, then $c h_{c c}^{r}\left(C_{n}\right) \leqslant 2$. We prove this result in Lemma 18, below. To provide the reader with a better intuition on the seemingly complicated proof of Lemma 18, we shall prove in Lemma 17 a special case of this result. Indeed, the main idea of the proof of Lemma 18 stems from the proof of Lemma 17.

Lemma 17. If $r=\chi_{c}\left(C_{n}\right)$, then $c h_{c c}^{r}\left(C_{n}\right) \leqslant 2$.
Proof. Assume $n=2 k+1$ and $r=2+\frac{1}{k}$. Let $z=\frac{r}{n}=\frac{1}{k}$. Without loss of generality, assume $L\left(v_{0}\right)=[0,2]_{r}$. For $v \in C_{n}$, let $\bar{L}(v)=\{j: j z \in$ $L(v)\}$. Then $\bar{L}\left(v_{0}\right)=\{0,1, \ldots, n-1\}$. For each other vertex $v, \bar{L}(v)$ is a set of circular consecutive integers, modulo n, from $\{0,1,2, \ldots, n-1\}$. Furthermore, there is at most one $i, 0 \leqslant i \leqslant n-1$, such that $i \notin \bar{L}(v)$. For $i=0,1, \ldots, n-1$, let

$$
\phi_{i}\left(v_{j}\right)=(i+j k) \bmod n
$$

Then for each i, ϕ_{i} is a $(2 k+1, k)$-colouring of C_{n}. For each vertex v, there is at most one i such that $\phi_{i}(v) \notin \bar{L}(v)$, while for $v_{0}, \phi_{i}\left(v_{0}\right) \in \bar{L}\left(v_{0}\right)$ for all i. Thus there is an index i^{*} such that $\phi_{i^{*}}(v) \in \bar{L}(v)$ for all vertices v of C_{n}. Letting $f(v)=\phi_{i^{*}}(v) z$, we obtain a circular L-colouring for C_{n}.

Lemma 18. If $2+\frac{1}{k} \leqslant r<2+\frac{1}{k-1}$, then $c h_{c c}^{r}\left(C_{n}\right) \leqslant 2$.
Proof. Let $z=\frac{r}{n}$. In the case $r=\frac{2 k+1}{k}$, the colours used to colour the vertices of C_{n} are restricted to the set $\{i z: i=0,1, \ldots, n-1\}$. For $2+\frac{1}{k}<$ $r<2+\frac{1}{k-1}$, instead of restricting to this colour set, we restrict to colours in $\cup_{i=0}^{n-1} X_{i}$, where

$$
X_{i}=[i z-x, i z]_{r}
$$

are intervals of length x ending at $i z$. Throughout the proof, when we encounter a negative real number, say w, on $S(r)$, we regard it as $r+w$ on $S(r)$. For instance, $X_{0}=[r-x, 0]_{r}$. We choose the length x to be $(n-1) z-2$, which is the smallest real number such that every interval of $S(r)$ of length 2 intersects at least $n-1$ of the intervals $X_{i}(i=0,1, \ldots, n-1)$. Figure 1 illustrates the intervals X_{i} on $S(r)$. Note that when $r=2+\frac{1}{k}$, then $x=0$ and each X_{i} is a single point of $S(r), X_{i}=\{i / k\}$.

For each vertex v, denote $\bar{L}(v)=\left\{j: X_{j} \cap L(v) \neq \emptyset\right\}$. By our assumption, $L\left(v_{0}\right)=[0,2]_{r}$. Thus $\bar{L}\left(v_{0}\right)=\{0,1,2, \cdots, n-1\}$. For each $v, \bar{L}(v)$ contains at least $n-1$ of the integers $0,1, \ldots, n-1$. Denote the missing number of $\bar{L}(v)$, if exists, by $m(v)$; otherwise $m(v)=\infty$. Observe,

$$
m(v)= \begin{cases}i, & \text { if } \bar{L}(v)=\{i+1, i+2, \cdots, i-1\}(\bmod n) \\ \infty, & \text { if } L(v)=[j z, j z+2]_{r} \text { for some } j \in\{0,1, \cdots, n-1\}\end{cases}
$$

Figure 1: Locations of the intervals X_{i} 's on $S(r)$, in the proof of Lemma 18

Let ϕ_{i} be defined as in the proof of Lemma 17. By the proof of Lemma 17, we can find an index $i \in\{0,1, \ldots, n-1\}$ such that $\phi_{i}(v) \in \bar{L}(v)$ for all vertices v of C_{n}. To obtain a circular L-colouring f of C_{n}, we may let $f(v)$ be a colour from the set $X_{\phi_{i}(v)} \cap L(v)$. However, for some choices of the colours for $f(v)$ from $X_{\phi_{i}(v)} \cap L(v)$, the resulting mapping f may not be a circular r-colouring of C_{n}. For example, if $\phi_{i}\left(v_{j}\right)=a, \phi_{i}\left(v_{j+1}\right)=a+k$, $X_{a} \cap L\left(v_{j}\right) \subseteq(a z-x / 2, a z]_{r}$ and $X_{a+k} \cap L\left(v_{j+1}\right) \subseteq[(a+k) z-x,(a+k) z-$ $x / 2)_{r}$, then straightforward calculation shows that for any $s \in X_{a} \cap L\left(v_{j}\right)$ and $s^{\prime} \in X_{a+k} \cap L\left(v_{j+1}\right)$, we have $\left|s-s^{\prime}\right|_{r}<1$. On the other hand, by a straightforward calculation, it can be verified that if s is the middle point of X_{a}, i.e., $s=a z-\frac{1}{2} x$, then for any $s^{\prime} \in X_{a+k}$, one has $\left|s-s^{\prime}\right|_{r} \geqslant 1$.

Therefore, we need to take special care of the case when $L(v)$ intersects $X_{\phi_{i}(v)}$ but does not contain the middle point of $X_{\phi_{i}(v)}$. If $m(v)=i$ for some $i=0,1,2, \cdots, n-1$, then $L(v)$ partly intersects X_{i+1} and X_{i-1}. Let $\alpha(v)=$ $\left|L(v) \cap X_{i+1}\right|_{r}$ and $\beta(v)=\left|L(v) \cap X_{i-1}\right|_{r}$. If $m(v)=\infty$, let $\alpha(v)=\beta(v)=0$. Referring to Figure 1, it is obvious that for any vertex $v, \alpha(v)+\beta(v) \geqslant x$ and hence $\alpha(v)$ and $\beta(v)$ cannot be both less than $x / 2$, except when $m(v)=\infty$ in which $\alpha(v)=\beta(v)=0$.

For $i=0,1,2, \cdots, n-1$, set

$$
\begin{aligned}
\phi_{i}\left(v_{j}\right) & =(i+j k) \bmod n ; \\
\psi_{i}\left(v_{j}\right) & =(i-j k) \bmod n .
\end{aligned}
$$

For each $i=0,1, \cdots, n-1$, we define a function $h_{i}: V\left(C_{n}\right) \rightarrow X$ by

$$
h_{i}\left(v_{j}\right)= \begin{cases}\phi_{i}\left(v_{j}\right) z-\frac{x}{2}, & \text { if } I_{i, j}=\emptyset \text { or }\left\|I_{i, j}\right\| \geqslant \frac{x}{2} \\ a_{j}, & \text { if } I_{i, j} \neq \emptyset,\left\|I_{i, j}\right\|<\frac{x}{2} \text { and } a_{j} \in X_{\phi_{i}\left(v_{j}\right)} ; \\ a_{j}+2, & \text { if } I_{i, j} \neq \emptyset,\left\|I_{i, j}\right\|<\frac{x}{2} \text { and } a_{j}+2 \in X_{\phi_{i}\left(v_{j}\right)},\end{cases}
$$

where $I_{i, j}=X_{\phi_{i}\left(v_{j}\right)} \cap L\left(v_{j}\right)$ and $\left\|I_{i, j}\right\|$ is the length of $I_{i, j}$.
Analogously, we define functions g_{i} for $0 \leqslant i \leqslant n-1$, by replacing $\phi_{i}\left(v_{j}\right)$ by $\psi_{i}\left(v_{j}\right)$ in the above definition of h_{i}.

It suffices to show that h_{i} or g_{i} for some i is a circular L-colouring for C_{n}. Note, the function h_{i} or g_{i} becomes invalid as a circular L-colouring only if at least one of the following occurs:
(a) $I_{i, j}=\emptyset$ for some j (that is, $m\left(v_{j}\right)=\phi_{i}\left(v_{j}\right)$ or $\left.m\left(v_{j}\right)=\psi_{i}\left(v_{j}\right)\right)$.
(b) $\left|h_{i}\left(v_{j}\right)-h_{i}\left(v_{j+1}\right)\right|_{r}<1$ or $\left|g_{i}\left(v_{j}\right)-g_{i}\left(v_{j+1}\right)\right|_{r}<1$ for some j.

To deal with the situations in (a) and (b), we define two types of edges on C_{n}, namely, saving and wasting edges. A directed edge $\left(v_{t}, v_{t^{\prime}}\right)$, where $t, t^{\prime}=0,1, \cdots, n-1$ and $t^{\prime}=t \pm 1$, is called tight if $a_{t} \in X_{j}, a_{t^{\prime}}+2 \in X_{j+k}$ for some j, and $\alpha\left(v_{t}\right)+\beta\left(v_{t^{\prime}}\right)<\frac{x}{2}$. An edge $v_{t} v_{t^{\prime}}, t^{\prime}=t \pm 1$, on C_{n} is called
saving if $\left|m\left(v_{t}\right)-m\left(v_{t^{\prime}}\right)\right|_{n}=k$, and
wasting if $\left(v_{t}, v_{t^{\prime}}\right)$ or $\left(v_{t^{\prime}}, v_{t}\right)$ is tight.
The sets of saving and wasting edges are denoted by S and W, respectively. Note, $S \cap W=\emptyset$.

Consider (a). For each $j=1,2, \cdots, n-1, \bar{L}\left(v_{j}\right)$ contains all except at most one number from 0 to $n-1$, so v_{j} would result in at most two functions, say h_{i} and $g_{i^{\prime}}$, invalid. Precisely, this occurs when $m\left(v_{j}\right)=\phi_{i}\left(v_{j}\right)=\psi_{i^{\prime}}\left(v_{j}\right)$. On the other hand, for each saving edge, say $v_{t} v_{t^{\prime}} \in S, v_{t}$ and $v_{t^{\prime}}$ together would only make at most three functions invalid, instead of 4 by considering v_{t} and $v_{t^{\prime}}$ separately, because if $m\left(v_{t}\right)=\phi_{i}\left(v_{t}\right)=\psi_{i^{\prime}}\left(v_{t}\right)$ then $m\left(v_{t^{\prime}}\right)=$ $m\left(v_{t}\right) \pm k$ which is equal to either $\phi_{i}\left(v_{t^{\prime}}\right)$ or $\psi_{i^{\prime}}\left(v_{t^{\prime}}\right)$, as $n=2 k+1$. Hence, by considering vertices $v_{i}, i=1,2, \cdots, n-1$, and edges in S, we conclude at most $2 n-2-|S|$ functions of h_{i} 's and g_{i} 's are invalid.

Now consider (b). Notice that since $k z-\frac{x}{2}=1$, by definitions of h_{i} and g_{i}, (b) occurs only when $v_{j} v_{j^{\prime}}$ is a wasting edge. As each wasting edge results in at most one more function invalid, together with (a) at most $2 n-2-|S|+|W|$ functions are invalid. As there are $2 n$ functions to choose,
we conclude that if $|S| \geqslant|W|-1$ then there exists some i such that h_{i} or g_{i} is a circular L-colouring for C_{n}.

It remains to consider the case that $|S|<|W|-1$. We define a new scaling on $S(r)$ by rotating the previously old scaling clockwise (that is, in the increasing order on $S(r)$) by $\frac{x}{2}$. Notice, the position of $L(v)$ on $S(r)$ for each v remains the same. Analogously, we define the corresponding parameters and functions for the new scaling the same as in the old scaling, and denote them accordingly by $X_{i}^{*}, a_{i}^{*}, m^{*}(v), \alpha^{*}(v), \beta^{*}(v), h_{i}^{*}, g_{i}^{*}, W^{*}$, S^{*}, etc. For instance, we now have $L\left(v_{0}\right)=\left[\frac{x}{2}, 2+\frac{x}{2}\right]_{r}$ (that is, $a_{0}^{*}=\frac{x}{2}$).

Claim. $W \subseteq S^{*}$ and $W^{*} \subseteq S$.
Proof. To prove $W \subseteq S^{*}$, let $\left(v_{t}, v_{t^{\prime}}\right)$ be a tight edge in the old scaling. Then $a_{t} \in X_{j}, a_{t^{\prime}}+2 \in X_{j+k}$ for some j, and $\alpha\left(v_{t}\right)+\beta\left(v_{t^{\prime}}\right)<\frac{x}{2}$. In the new scaling, $\frac{x}{2} \leqslant a_{t}^{*}<x$ and $L\left(v_{t^{\prime}}\right) \cap X_{j+k}^{*}=\emptyset$. Hence, we get $m^{*}\left(v_{t}\right)=j-1$ and $m^{*}\left(v_{t^{\prime}}\right)=j+k$, implying $\left|m^{*}\left(v_{t}\right)-m^{*}\left(v_{t^{\prime}}\right)\right|_{n}=k$, so $v_{t} v_{t^{\prime}} \in S^{*}$.

Similarly one can prove that $W^{*} \subseteq S$.
As before, among the $2 n$ new functions h_{i}^{*} 's and g_{i}^{*} 's from the new scaling, at most $2 n-\left|S^{*}\right|+\left|W^{*}\right|$ are invalid as circular L-colourings for C_{n}. Because $|S|<|W|-1$, by the Claim, we get $2 n-\left|S^{*}\right|+\left|W^{*}\right| \leqslant 2 n-2$. This implies that there exists some h_{i}^{*} or g_{i}^{*} which is a circular L-colouring for C_{n}. The proof of Lemma 18 is complete.

5 Generalized theta graphs

As observed earlier, $K_{2, n}$ is circular consecutive 2-choosable. Indeed, by definition $K_{2, n}$ is the generalized theta graph $\underbrace{\theta_{2,2, \cdots, 2}}_{n}$. Hence, to study
Question 1 it is natural to consider the following:
Question 2. For which positive integers $k_{1}, k_{2}, \cdots, k_{n}$, the generalized theta graph $\theta_{k_{1}, k_{2}, \cdots, k_{n}}$ is circular consecutive 2 -choosable?

In this section, we provide partial answers to Question 2. First we consider circular L-colourings of the graph $\theta_{2,2,2}$ for some special colour-list assignment L.

Let the three paths of length 2 in $\theta_{2,2,2}$ be $\left(x, z_{1}, x^{\prime}\right),\left(x, z_{2}, x^{\prime}\right)$ and $\left(x, z_{3}, x^{\prime}\right)$. Assume $0<\epsilon \leqslant 1 / 2$. Let $0<\delta \leqslant(1-\epsilon) / 3$ and $r=4-\epsilon$. Let
$l: V\left(\theta_{2,2,2}\right) \rightarrow[0,4-\epsilon)$ be defined as

$$
l(v)= \begin{cases}0, & \text { if } v=x \\ 2+2 \delta, & \text { if } v=x^{\prime} \\ r-1-\delta, & \text { if } v=z_{1} \\ r-1+3 \delta+\epsilon, & \text { if } v=z_{2} \\ 1+\delta, & \text { if } v=z_{3}\end{cases}
$$

Lemma 19. Let $l: V\left(\theta_{2,2,2}\right) \rightarrow[0,4-\epsilon)$ be defined as above. Let $L(v)=$ $(l(v), l(v)+2+\delta)_{r}$ for $v \in \theta_{2,2,2}$. If f is a circular L-colouring of $\theta_{2,2,2}$, then

$$
f(x) \in(0,4 \delta+\epsilon)_{r} \text { and } f\left(x^{\prime}\right) \in(r-\delta, 3 \delta+\epsilon)_{r} .
$$

Proof. Assume the lemma is not true and f is a circular L-colouring of $\theta_{2,2,2}$ for which $f(x) \notin(0,4 \delta+\epsilon)_{r}$ or $f\left(x^{\prime}\right) \notin(r-\delta, 3 \delta+\epsilon)_{r}$.

First we consider the case that $f(x) \notin(0,4 \delta+\epsilon)_{r}$. Then $f(x) \in[4 \delta+\epsilon, 2+$ $\delta)_{r}$. (Refer to Figure 2 for the positions of the intervals $L(x), L\left(x^{\prime}\right), L\left(z_{1}\right)$, $L\left(z_{2}\right)$ and $L\left(z_{3}\right)$.)

Figure 2: Locations of the intervals $L(x), L\left(x^{\prime}\right), L\left(z_{1}\right), L\left(z_{2}\right), L\left(z_{3}\right)$, in the proof of Lemma 19

Since $L\left(z_{2}\right)=(r-1+3 \delta+\epsilon, 1+4 \delta+\epsilon)_{r}$, this forces $f\left(z_{2}\right) \in(r-$ $1+3 \delta+\epsilon, f(x)-1]_{r}$. As $L\left(x^{\prime}\right)=(2+2 \delta, 3 \delta+\epsilon)_{r}$, we must have $f\left(x^{\prime}\right) \in$ $\left(2+2 \delta, f\left(z_{2}\right)-1\right]_{r}$. On the other hand, we have $f\left(z_{3}\right) \in\left[f(x)+1, f\left(x^{\prime}\right)-1\right]_{r}$.

The four colours $f(x), f\left(z_{2}\right), f\left(x^{\prime}\right), f\left(z_{3}\right)$ occur in the circle $S(r)$ in this cyclic order, and every two consecutive colours have distance at least 1. This is a contradiction, because $S(r)$ has length $r=4-\epsilon<4$.

If $f\left(x^{\prime}\right) \notin(r-\delta, 3 \delta+\epsilon)_{r}$, then $f\left(x^{\prime}\right) \in(2+2 \delta, r-\delta]_{r}$. This forces $f\left(z_{1}\right) \in\left[f\left(x^{\prime}\right)+1,1\right)_{r}$, which in turn forces $f(x) \in\left[f\left(z_{1}\right)+1,2+\delta\right)_{r}$. As $f\left(z_{3}\right) \in\left[f(x)+1, f\left(x^{\prime}\right)-1\right]_{r}$ the four colours $f\left(x^{\prime}\right), f\left(z_{1}\right), f(x), f\left(z_{3}\right)$ occur in $S(r)$ in this cyclic order, and every two consecutive colours have distance at least 1 , which leads to the same contradiction.

In the following, we use Lemma 19 to prove that $\theta_{2,2,2, n}$ has circular consecutive choosability greater than 2 , provided that $n \neq 2,4,6$, and $\theta_{2,2,2,2, n}$ has circular consecutive choosability greater than 2 if $n \neq 2,6$.

Theorem 20. Suppose $n \geqslant 0$ is an integer. Then
(1) $c h_{c c}\left(\theta_{2,2,2,2 n+1}\right) \geqslant 2+1 /(n+5)$.
(2) $c h_{c c}\left(\theta_{2,2,2,2 n+8}\right) \geqslant 2+2 /(4 n+21)$.

Proof. Let the graph $\theta_{2,2,2, k}$ be obtained from the graph $\theta_{2,2,2}$, with vertices labeled as in Lemma 19, by adding the path ($x, y_{1}, y_{2}, \cdots, y_{k-1}, x^{\prime}$).

First we show that $c_{c c}\left(\theta_{2,2,2,2 n+1}\right) \geqslant 2+1 /(n+5)$ for any $n \geqslant 0$. It suffices to show that for any $0<\epsilon \leqslant 1 / 2$, for $r=4-\epsilon$ and for $\delta=$ $(1-\epsilon) /(n+5)$, there is a list assignment L which assigns to each vertex v an open interval of length $2+\delta$ of $S(r)$, for which there is no circular L-colouring of $\theta_{2,2,2,2 n+1}$.

Let $l: V\left(\theta_{2,2,2,2 n+1}\right) \rightarrow[0,4-\epsilon)$ be defined so that the restriction to $\theta_{2,2,2}$ is the same as in Lemma 19, and

$$
l\left(y_{j}\right)= \begin{cases}r+(4+t) \delta+\epsilon-1, & \text { if } j=2 t+1, \\ r-t \delta, & \text { if } j=2 t\end{cases}
$$

We shall show that there is no circular L-colouring of $\theta_{2,2,2,2 n+1}$. Assume to the contrary that there is a circular L-colouring f of $\theta_{2,2,2,2 n+1}$. By Lemma 19, $f(x) \in(0,4 \delta+\epsilon)_{r}$ and $f\left(x^{\prime}\right) \in(r-\delta, 3 \delta+\epsilon)_{r}$.

Since $L\left(y_{1}\right)=(r+4 \delta+\epsilon-1,1+5 \delta+\epsilon)_{r}$ and $\left|f(x)-f\left(y_{1}\right)\right|_{r} \geqslant 1$, we conclude that $f\left(y_{1}\right) \in(1,1+5 \delta+\epsilon)_{r}$. Since $L\left(y_{2}\right)=(r-\delta, 2)_{r}$ and $\left|f\left(y_{1}\right)-f\left(y_{2}\right)\right|_{r} \geqslant 1$, we have $f\left(y_{2}\right) \in(r-\delta, 5 \delta+\epsilon)_{r}$. Inductively, one can
show that

$$
\begin{aligned}
f\left(y_{2 j+1}\right) & \in(1-j \delta, 1+(j+5) \delta+\epsilon)_{r} \\
f\left(y_{2 j}\right) & \in(r-j \delta,(j+4) \delta+\epsilon)_{r} .
\end{aligned}
$$

In particular, $f\left(y_{2 n}\right) \in(r-n \delta,(n+4) \delta+\epsilon)_{r}$. As $f\left(x^{\prime}\right) \in(r-\delta, 3 \delta+\epsilon)_{r}$ and $(n+5) \delta+\epsilon<1$, we conclude that $\left|f\left(x^{\prime}\right)-f\left(y_{2 n}\right)\right|_{r}<1$, in contrary to the assumption that f is a circular L-colouring of $\theta_{2,2,2,2 n+1}$. This completes the proof of (1).

Next we prove that $c h_{c c}\left(\theta_{2,2,2,2 n+8}\right) \geqslant 2+2 /(4 n+21)$ for any $n \geqslant 0$.
Let $\epsilon=\frac{2 n+6}{4 n+21}, r=4-\epsilon$ and $\delta=\frac{2}{4 n+21}$. Let $l: V\left(\theta_{2,2,2,2 n+8}\right) \rightarrow[0,4-\epsilon)$ be defined so that the restriction of l to $\theta_{2,2,2}$ is as defined in Lemma 19 and

$$
l\left(y_{j}\right)= \begin{cases}j-2+(3+j) \delta+\epsilon, & \text { if } 1 \leqslant j \leqslant 7 \\ 6+(7+t) \delta+\epsilon, & \text { if } j=2 t \geqslant 8 \\ 7-(t-3) \delta, & \text { if } j=2 t+1 \geqslant 9\end{cases}
$$

Now we shall prove that $\theta_{2,2,2,2 n+8}$ has no circular L-colouring. Assume to the contrary that f is a circular L-colouring of $\theta_{2,2,2,2 n+8}$. By Lemma 19, $f(x) \in(0,4 \delta+\epsilon)_{r}$ and $f\left(x^{\prime}\right) \in(r-\delta, 3 \delta+\epsilon)_{r}$.

Similarly as in the proof of (1), we can prove by induction that for $j=1,2, \cdots, 7$,

$$
f\left(y_{j}\right) \in(j, j+(j+4) \delta+\epsilon)_{r}
$$

For $j=2 t \geqslant 8$,

$$
f\left(y_{j}\right) \in(8-(t-4) \delta, 8+(t+8) \delta+\epsilon)_{r} .
$$

For $j=2 t+1 \geqslant 9$,

$$
f\left(y_{j}\right) \in(7-(t-3) \delta, 7+(t+8) \delta+\epsilon)_{r} .
$$

In particular,

$$
f\left(y_{2 n+7}\right) \in(7-n \delta, 7+(n+11) \delta+\epsilon)_{r} .
$$

However, it is straightforward to verify that for any $a \in(r-\delta, 3 \delta+\epsilon)_{r}$, for any $b \in(7-n \delta, 7+(n+11) \delta+\epsilon)_{r},|a-b|_{r}<1$. This is in contrary to our assumption that f is a circular L-colouring of $\theta_{2,2,2,2 n+8}$. This completes the proof of (2).

We do not know whether $c h_{c c}\left(\theta_{2,2,2,2 n}\right)>2$ for $n=2,3$. The next lemma shows that $\operatorname{ch}_{c c}\left(\theta_{2,2,2,2,4}\right)>2$.

Theorem 21. $c h_{c c}\left(\theta_{2,2,2,2,4}\right) \geqslant 2+1 / 8$.
Proof. Similar to Lemma 19, we first consider circular L-colourings of $\theta_{2,2,2,2}$, which is obtained from the graph $\theta_{2,2,2}$ in Lemma 19 by adding the path $\left(x, z_{4}, x^{\prime}\right)$. Let $l: V\left(\theta_{2,2,2,2}\right) \rightarrow[0,4-\epsilon)$ be defined such that the restriction of l to $\theta_{2,2,2,2} \backslash\left\{z_{4}\right\}$ is the same as in Lemma 19, and let $l\left(z_{4}\right)=r-1+\delta+\epsilon / 2$.

Claim 1. If f is a circular L-colouring of $\theta_{2,2,2,2}$ then either

$$
f(x) \in(0,2 \delta+\epsilon / 2)_{r}, \quad \text { and } \quad f\left(x^{\prime}\right) \in(-\delta, 2 \delta+\epsilon / 2)_{r}
$$

or

$$
f(x) \in(\delta+\epsilon / 2,4 \delta+\epsilon)_{r}, \quad \text { and } \quad f\left(x^{\prime}\right) \in(\delta+\epsilon / 2,3 \delta+\epsilon)_{r} .
$$

Proof. If the claim is not true, then by using Lemma 19, we conclude that one of $f(x), f\left(x^{\prime}\right)$ lies in the interval $(-\delta, \delta+\epsilon / 2]_{r}$ and the other lies in the interval $[2 \delta+\epsilon / 2,4 \delta+\epsilon)_{r}$. Since z_{4} is adjacent to both x and x^{\prime}, there is no legal colour for z_{4} in the interval $L\left(z_{4}\right)$. This proves the claim.

Let $l: V\left(\theta_{2,2,2,2,4}\right) \rightarrow[0,4-\epsilon)$ be defined so that the restriction of l to $\theta_{2,2,2,2}$ is as in Claim 1 and for $j=1,2,3, l\left(y_{j}\right)=j-2+(3+j) \delta+\epsilon$. We shall show that, for appropriate ϵ and $\delta, \theta_{2,2,2,4}$ has no circular L-colouring. Assume to the contrary that f is a circular L-colouring of $\theta_{2,2,2,2,4}$.

Let $\epsilon=1 / 2$ and let $\delta=1 / 8$. By Claim 1 , we have two cases.

Case 1

$$
f(x) \in(0,2 \delta+\epsilon / 2)_{r}, \quad \text { and } \quad f\left(x^{\prime}\right) \in(-\delta, 2 \delta+\epsilon / 2)_{r} .
$$

By using the proof of Theorem 20, we can show that $f\left(y_{3}\right) \in(3,3+7 \delta+$ $\epsilon)_{r}$. Since $\epsilon=1 / 2$ and $\delta=1 / 8$, straightforward calculation shows that for any $a \in(-\delta, 2 \delta+\epsilon / 2)_{r}$, for any $b \in(3,3+7 \delta+\epsilon)_{r}$, we have $|a-b|_{r}<1$, in contrary to our assumption that f is a circular L-colouring of $\theta_{2,2,2,2,4}$.

Case 2

$$
f(x) \in(\delta+\epsilon / 2,4 \delta+\epsilon)_{r}, \text { and } f\left(x^{\prime}\right) \in(\delta+\epsilon / 2,3 \delta+\epsilon)_{r} .
$$

Observe that, in comparison with Case 1 , the possible colour of $f(x)$ is "shifted to the right" by a distance of $\delta+\epsilon / 2$. By using the argument as in
the proof of Theorem 20, we can show that $f\left(y_{3}\right) \in(3+\delta+\epsilon / 2,3+7 \delta+\epsilon)_{r}$. Again, straightforward calculation shows that for any $a \in(\delta+\epsilon / 2,3 \delta+\epsilon)_{r}$, for any $b \in(3+\delta+\epsilon / 2,3+7 \delta+\epsilon)_{r}$, we have $|a-b|_{r}<1$, in contrary to our assumption that f is a circular L-colouring of $\theta_{2,2,2,2,4}$.

We have shown that many generalized theta graphs G have $c h_{c c}(G)>2$. A complete characterization of circular consecutive 2-choosable generalized theta graphs remains open and is interesting for further research. The following is a weaker version of this problem and is also open:

Question 3. Is it true that for any positive integer $k, \theta_{2,2,2 k+1}$ is circular consecutive 2-choosable?

References

[1] O. V. Borodin, S. J. Kim, A. V. Kostochka and D. B. West, Homomorphisms from sparse graph with large girth, J. Combin. Theory Ser. B, 90 (2004), no. 1, 147-159.
[2] P. Erdős, A. L. Rubin and H. Taylor, Choosability in graphs, Proc. West Coast Conf. on Combinatorics, Graph Theory and Computing, Congress. Numer., XXVI (1980), 125-157.
[3] A. Galluccio, L. Goddyn and P. Hell, High-girth graphs avoiding a minor are nearly bipartite, J. Combin. Theory Ser. B, 83 (2001), 1-14.
[4] W. Klostermeyer and C.Q.Zhang, ($2+\epsilon$)-colouring of planar graphs with large odd girth, J. Graph Theory, 33 (2000), 109-119.
[5] W. Lin, C. Yang, D. Yang and X. Zhu, Circular consecutive choosability of graphs, Taiwanese Journal of Mathematics, to appear.
[6] S. Norine, T. Wong and X. Zhu, Circular choosability via Combinatorial Nullstellensatz, Journal of Graph Theory, to appear.
[7] A. Raspaud and X. Zhu, List circular colouring of trees and cycles, J. Graph Theory, 55 (2007), 249-265.
[8] C. Thomassen, Every planar graph is 5-choosable, J. Combin. Theory Ser. B, 62(1) (1994), 180-181.
[9] V. G. Vizing, Coloring the vertices of a graph in prescribed colors, Metody Diskret. Anal. v Teorii Kodov i Schem, 29 (1976), 3-10. (In Russian)
[10] R.J.Waters, Consecutive list colouring and a new graph invariant, J. London Math. Soc. (2), 73 (2006), 565-585.
[11] X. Zhu, The circular chromatic number of planar graphs of large odd girth, Electronic Journal of Combinatorics, 2001, \#R25.
[12] X. Zhu, Circular chromatic number: a survey, Discrete Math, 229 (2001), 371-410.
[13] X. Zhu, Recent developments in circular colouring of graphs, in Topics in Discrete Mathematics, Algorithms Combin. 26 (Springer, Berlin, 2006), 497-550.
[14] X. Zhu, Circular choosability of graphs, J. Graph Theory, 48(2005), 210-218.

[^0]: *Department of Mathematics, California State University, Los Angeles, Los Angeles, CA 90032. Partially supported by the NSF grant DMS0302456.
 ${ }^{\dagger}$ School of Mathematics, Georgia Tech, Atlanta, GA 30332-0160. Partially supported by NSF grants 0200595 .
 ${ }^{\ddagger}$ Department of Mathematics, Tamkang University. Grant number: NSC95-2811-M-110-008
 ${ }^{\S}$ Department of Applied Mathematics, National Sun Yat-sen University, Kaohsiung, Taiwan 80424, and National Center for Theoretical Sciences. Partially supported by NSC95-2115-M-110-013-MY3

