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Abstract

We look at binary strings of length n which contain no odd run
of zeros and express the total number of such strings, the number of
zeros, the number of ones, the total number of runs, and the number
of levels, rises and drops as functions of the Fibonacci and Lucas
numbers and also give their generating functions. Furthermore, we
look at the decimal value of the sum of all binary strings of length
n without odd runs of zeros considered as base 2 representations of
decimal numbers, which interestingly enough are congruent (mod 3)
to either 0 or a particular Fibonacci number. We investigate the
same questions for palindromic binary strings with no odd runs of
zeros and obtain similar results, which generally have different forms
for odd and even values of n.
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1 Introduction

Binary sequences are of great importance in computer science, where they
encode instructions as well as decimal numbers using just the digits 0 and
1. Thus, most questions regarding binary sequences relate to their decimal
values. However, one can also regard them as an “abstract” string of digits,
very much like compositions. A composition of n is an ordered sequence of
numbers whose sum is n, whereas a binary string of length n is an ordered
sequence of n zeros and ones. Actually, there is a one-to-one correspondence
between compositions of n + 1 with odd summands and binary strings of
length n without odd runs of zeros. The latter will be investigated in this
article.

Alladi and Hoggatt [1] have studied compositions of n with sum-
mands 1 and 2, and found many connections to the Fibonacci sequence.
Besides counting the number of such compositions, they looked at the num-
ber of occurrences of the individual summands and the number of levels (a
summand followed by itself), rises (a summand followed by a larger sum-
mand) and drops (a summand followed by a smaller summand). Chinn
et. al. [2, 3] have looked at these questions for compositions that allow all
integers as summands, and Grimaldi has examined compositions without
1’s [4] and compositions with odd summands [5], where he also looked at
congruence questions.

In this paper we will explore similar questions for binary strings of
length n without odd runs of zeros. Such a string is a sequence of n zeros
and ones, where no odd number of zeros occur consecutively. A consecutive
string (of maximal length) of either zeros or ones is called a run. Even
though there is a one-to-one correspondence between the compositions of
n+ 1 with odd summands and the binary strings of length n without odd
runs of zeros, this one-to-one correspondence does not extend to quantities
such as the number of levels, rises and drops.

We derive recurrence equations for several characteristics and express
these quantities as functions of the Fibonacci and Lucas numbers, and also
give their respective generating functions. In Section 2 we introduce our
notation and state some basic facts about the Fibonacci and Lucas numbers
that will be used in subsequent sections. Section 3 contains results on the
total number of binary strings of length n without odd runs of zeros, the
number of zeros and ones, the total number of runs, and the number of
levels, rises and drops in all such strings. In addition, we show that the
sum of the decimal values of all such binary strings of length n is congruent
to 0 (mod 3) for even n, and Fn+1 (mod 3) for odd n. Section 4 contains
the corresponding results for palindromic binary strings of length n without
odd runs of zeros. These are strings that read the same from left to right as
from right to left. For the palindromic binary strings the results are similar
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as for the binary strings, but there are always separate formulas for odd
and even n.

2 Notation and general observations

an = the total number of binary strings of length n without
odd runs of zeros

an,0, an,1 = the total number of binary strings of length n without
odd runs of zeros ending in 0 and 1, respectively

zn = the total number of zeros in all binary strings of length
n without odd runs of zeros

wn = the total number of ones in all binary strings of length
n without odd runs of zeros

tn = the total number of runs in all binary strings of length
n without odd runs of zeros

vn = the value of the sum of the an strings considered as the
base 2 representation of decimal (base 10) integers

We use the same variable names with a ˜ to denote the corresponding
quantities for palindromic binary strings. The notation Gan(x) is used
for the generating function

P∞
n=1 anx

n of the sequence {an}∞1 . Fn and
Ln denote the n

th Fibonacci and Lucas number, respectively. Recall that
explicit formulas for the nth Fibonacci and Lucas numbers are given by the
Binet forms

Fn =
αn − βn
α− β =

αn − βn√
5

and Ln = αn + βn,

where

α =
1 +
√
5

2
and β =

1−√5
2

,

and that the generating functions are

GFn(x) =
x

1− x− x2 and GLn(x) =
x+ 2x2

1− x− x2 .

Note that the sequence for the Lucas numbers starts with L1, which
is reflected in the generating function GLn - it does not contain the term for
L0 = 2. We will also need the generating functions of {nFn}∞1 , {nLn}∞1 ,
{2nFn}∞1 , and {2nLn}∞1 .
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Lemma 1 1. GnFn(x) =
x+x3

(1−x−x2)2 and GnLn(x) =
x+4x2−x3
(1−x−x2)2 .

2. G2nFn(x) = GFn(2x)=
2x

(1−2x−4x2) and G2nLn(x) = GLn(2x) =
2x+8x2

(1−2x−4x2) .

Proof: 1. GnFn(x) = x · ddxGFn(x) and GnLn(x) = x · d
dxGLn(x). (See for

example [8], Eq. (2.2.2), p. 34.)
2. G2nFn(x) =

P∞
n=1 2

nFnx
n =

P∞
n=1 Fn(2x)

n = GFn(2x). Likewise for
G2nLn(x). 2

Both binary strings and palindromic binary strings without odd runs
of zero can be created recursively from those of a shorter length. We will use
these creation methods to derive recursions for the quantities of interest.
For easier readability, we will leave out the specification “without odd runs
of zeros” in the remainder of this article.

3 Results for binary strings

To create a binary string of length n, we can either append a 1 to a binary
string of length n − 1, or the string 00 to a binary string of length n − 2.
We will refer to this process as the creation process. First we look at the
total number of such binary strings, and also count how many of these end
in either 0 or 1.

Theorem 2 1. an = Fn+1 for n ≥ 1.
2. an,0 = Fn−1 and an,1 = Fn.

Proof: From the creation process it is clear that an = an−1 + an−2, the
Fibonacci recurrence. Since a1 = 1 and a2 = 2, it follows that an = Fn+1.
In addition, an,0 = an−2 = Fn−1 and an,1 = an−1 = Fn. 2

Next we look at the total number of zeros that occur in the binary
strings of length n. We will express zn as a function of the n

th Fibonacci
and Lucas numbers.

Theorem 3 1. zn =
2
5nLn − 2

5Fn for n ≥ 1 and Gzn(x)=
2x2

(1−x−x2)2 .
2. wn =

2
5Fn +

1
10nLn +

1
2nFn for n ≥ 1 and Gwn(x)=

x
(1−x−x2)2 .
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Proof: 1. We will show this proof in more detail, as many of the later
proofs use the same argument and will only be sketched. From the creation
process we get the following recurrence relation:

zn = zn−1 + zn−2 + 2an−2 = zn−1 + zn−2 + 2
αn−1 − βn−1√

5
. (1)

When appending the 1, no new zeros are created, while two additional
zeros are created for each of the an−2 binary strings of length n− 2. This
difference equation has a solution of the form zn = z

(h)
n + z

(p)
n . Since the

associated homogeneous recurrence is the Fibonacci recurrence, it follows

that z
(h)
n = c1α

n + c2β
n for some constants c1 and c2. The inhomogeneous

part contains powers of α and β, hence z
(p)
n = Anαn + Bnβn for some

constants A and B (see for example [6]). Substituting z
(p)
n into Eq. (1) and

collecting only the terms that contain powers of α results in the following
equation:

Anαn = A(n− 1)αn−1 +A(n− 2)αn−2 + (2/√5)αn−1. (2)

Since α is a root of the Fibonacci recurrence, An(αn − αn−1 − αn−2) = 0,
and Eq. (2) simplifies to

0 = −Aαn−1 − 2Aαn−2 + (2/√5)αn−1.
Dividing by αn−1, substituting the value for α and solving for A gives
A = 2/5. A similar computation for the terms that contain powers of β
results in B = 2/5. Thus,

zn = c1α
n + c2β

n +
2

5
n(αn + βn).

Using the initial conditions z1 = 0 and z2 = 2 results in c1 = − 2
√
5

25 and

c2 =
2
√
5

25 . Expressing sums and differences of powers of α and β as Lucas
and Fibonacci numbers gives the desired result. From the expression for

zn it follows that Gzn(x) = (2/5)GnLn(x)− (2/5)GFn(x) = 2x2

(1−x−x2)2 after
simplification.
2. This can be proved similarly to part 1. Alternatively, wn+ zn = nFn+1.
Substituting the solution for zn and using Ln−Fn = 2Fn−1 (which can be
easily shown by induction, or follows readily from the Binet forms for Fn
and Ln) gives the result for wn. The generating function Gwn is computed
in the same manner as Gzn . 2

Another quantity of interest is the number of runs in all binary strings
of length n. Again, this can be expressed as a function of the Fibonacci
and Lucas numbers.
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Theorem 4 tn =
1
10(5Ln − 3Fn) + n

5 (5Fn − Ln) for n ≥ 1 and Gtn(x)=
x−x4

(1−x−x2)2 .

Proof: Again we utilize the creation process. When creating the binary
strings of length n, an additional run is created for every binary string of
length n− 1 that ends in 0, and also for every binary string of length n− 2
that ends in 1, i.e. an−1,0 + an−2,1 = Fn−2 + Fn−2 additional runs. Thus,

tn = tn−1 + tn−2 + 2Fn−2, for n ≥ 3 with t1 = 1, t2 = 2.

With the same method as in Theorem 3, we get A = (−1 + √5)/5 and
B = (−1−√5)/5. Using the initial conditions gives c1 = 25−3√5

50 and c2 =
25+3

√
5

50 . Substituting the constants and expressing sums and differences
of powers of α and β as Lucas and Fibonacci numbers gives the desired
result, which also holds for n = 1 and n = 2. Gtn is computed as the
corresponding linear combination of GLn , GFn , GnLn and GnFn . 2

In connection with runs, we can look at the total number of rises
(switch from a 0 run to a 1 run), levels (within a run) and drops (switch
from a 1 run to a 0 run). Since there are n − 1 rises, levels or drops per
binary string of length n, we get that

rn + ln + dn = (n− 1)Fn+1. (3)

Furthermore, since the reverse of a binary string without odd runs of zeros
is also a binary string without odd runs of zeros, we have that rn = dn.
Thus we only need to derive the recurrence for the number of levels.

Theorem 5 ln =
1
10(3Fn − 5Ln) + n

10(7Ln − 5Fn) for n ≥ 1 and Gln(x)=
2x2+x4

(1−x−x2)2 .

Proof: For n ≥ 3, it follows from the creation process that

ln = (ln−1 + an−1,1) + (ln−2 + 2an−2,0 + an−2,1)

because we get all the previous levels, plus one additional one whenever we
append either a 1 to a sting of length n − 1 that ends in 1, or a 00 to a
string of length n − 2 that ends in 1. Appending 00 to a string of length
n− 2 that ends in 0 gives rise to two additional levels. Using Theorem 2,
we get

ln = ln−1 + Fn−1 + ln−2 + 2Fn−3 + Fn−2 = ln−1 + ln−2 + 3Fn−3 + 2Fn−2.
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This recurrence relation again has a solution of the form given in the proof
of Theorem 3, and we get A = (7−√5)/10 and B = (7 +√5)/10. Initial
conditions l1 = 0 and l2 = 2 give c1 = −12 + 3

√
5

50 and c2 = −12 − 3
√
5

50 .
Collecting sums and differences of powers of α and β gives the desired
result, which also holds for n = 1 and n = 2. The generating function is
computed by simplifying the associated linear combination of the respective
generating functions. 2

Corollary 6 rn = dn =
1
2 [(n− 1)Fn+1 − 1

10(3Fn − 5Ln)− n
10(7Ln − 5Fn)]

for n ≥ 1 and Grn(x)= x3

(1−x−x2)2 .

Proof: The formula for rn follows immediately from Eq. (3). Since rn =
[(n− 1)Fn+1 − ln]/2 = (n+ 1)Fn+1/2− Fn+1 − ln/2,we get

Grn(x) =
1

2

∞X
n=1

(n+ 1)Fn+1x
n −

∞X
n=1

Fn+1x
n − 1

2

∞X
n=1

lnx
n

=
1

2x

∞X
k=2

kFkx
k − 1

x

∞X
k=2

Fkx
k − 1

2
Gln(x)

=
1

2x
[GnFn(x)− x]−

1

x
[GFn(x)− x]−

1

2
Gln(x)

=
x3

(1− x− x2)2 .

2

Note that the generating function for rn can be expressed asGrn(x) =
x(GFn(x))

2, thus, the sequence for rn is a shifted convolution of the Fi-
bonacci sequence with itself.

Now we change focus a little and consider these stings as base 2
representations of decimal (base 10) integers. We will look at the sum of
all the decimal values of the binary strings of length n, and look at their
congruences mod 3. Instead of functions involving nLn and nFn we now
get expressions that involve 2nLn and 2

nFn.

Theorem 7 vn =
2n

11 (Ln + 7Fn)− 1
11(Ln + 4Fn) for n ≥ 1 and Gvn(x)=

x
(1−x−x2)(1−2x−4x2) .

Proof: Again we look at the creation process. We now have to determine
what effect appending a 1 or a 00 has on the decimal value. Appending a 1
shifts the string to the left, hence results in a multiplication of the decimal
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value by 2, and then an addition of 1 from the appended 1. Appending 00
results in a shift to the left of two positions, hence results in multiplication
of the decimal value by 4. As there are Fn binary strings of length n− 1,
we get the following recurrence:

vn = 2vn−1 + Fn + 4vn−2, with v1 = 1 and v2 = 3.

In this case, the homogeneous recurrence relation has characteristic roots
2α and 2β. Thus, the general solution is of the form

vn = c1(2α)
n + c2(2β)

n +Anαn +Bnβn.

Now we proceed as in the proof of Theorem 3, which results in A = −(5 +
4
√
5)/55 and B = −(5− 4√5)/55. Substituting the initial conditions and

solving the resulting system of equations gives c1 =
1
11 +

7
√
5

55 and c2 =
1
11 −

7
√
5

55 . Substituting these constants and grouping into sums and differences
of powers of α and β gives the result for n ≥ 3. However, this formula also
holds for n = 1 and n = 2. The generating function is computed by taking
the appropriate linear combination of the respective generating functions.
2

Finally, we examine the following.

Theorem 8 For even n, the decimal value of each individual binary string
of length n is congruent to 0 (mod 3), and vn ≡ 0 (mod 3) also. For odd n,
the decimal value of each individual binary string of length n is congruent
to 1 (mod 3), and vn ≡ Fn+1 (mod 3).

Proof: We show the congruence for the individual strings by induction.
The result for vn follows because there are Fn+1 binary strings of length n.
For n = 1, there is only one string, 1, whose value is congruent to 1 (mod
3). For n = 2, the only strings are 11 and 00 with decimal values of 3
and 0, respectively, and both of these are congruent to 0 (mod 3). We
now assume the induction hypothesis and use the creation process. If we
append a 1, then this corresponds to multiplication by 2 of the value of the
string of length n − 1 and addition of 1. Thus the string’s value is (using
the hypothesis) congruent to 2·1 (mod 3) + 1 (mod 3) ≡ 0 (mod 3) for
even n, and congruent to 2·0 (mod 3) + 1 (mod 3) ≡1 (mod 3) if n is odd.
If we append 00, then this corresponds to multiplication by 4 ≡ 1 (mod 3)
of the value for a string of length n− 2 and the result follows. 2
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4 Results for palindromic binary strings with-
out odd runs of zeros

We now derive the corresponding results for palindromic binary strings.
Palindromic binary strings of length n can be created by either attaching
a 1 to both ends of a palindromic binary string of length n − 2 or 00 to
both ends of a palindromic binary string of length n− 4. We will refer to
this way of creating palindromic binary strings as the palindromic creation
process.

For odd n, we note that the middle digit must be a 1, as otherwise
there would be an odd run of zeros in the center. Thus, a palindromic
binary string of length 2k + 1 can also be thought of as a binary string of
length k, concatenated with a 1, concatenated with the reverse of the binary
string. This viewpoint will be referred to as the explicit representation.

Theorem 9 1. ã2k = Fk+2 for k ≥ 1 and ã2k+1 = Fk+1 for k ≥ 0 and
Gãn(x)=

x+2x2+x4

(1−x2−x4) .

2. ãn,0 = ãn−4 and ãn,1 = ãn−2.

Proof: 1. If n = 2k, then from the palindromic creation process we get

ã2k = ã2k−2 + ã2k−4 = ã2(k−1) + ã2(k−2),

which is once more the Fibonacci recurrence. Using the initial values, ã2 =
ã2·1 = 2 (for the strings 00 and 11), and ã4 = ã2·2 = 3 (for the strings 0000,
1001, and 1111) gives that ã2k = Fk+2. If n = 2k + 1, then the explicit
representation gives ã2k+1 = ak = Fk+1, where the second equality follows
from Theorem 2. For the generating function, we have to split up the series
into odd and even terms, use the result of part 1, re-index, and simplify:

Gãn(x) =
∞X
k=0

ã2k+1x
2k+1 +

∞X
k=1

ã2kx
2k =

∞X
k=0

Fk+1x
2k+1 +

∞X
k=1

Fk+2x
2k

=
1

x

∞X
l=1

F̃l(x
2)l +

1

x4

∞X
l=3

F̃l(x
2)l

=
1

x
GFn(x

2) +
1

x4
[GFn(x

2)− (x2)− (x2)2] = x+ 2x2 + x4

(1− x2 − x4) .

2. This follows from the palindromic creation process. 2

Next we look at the number of zeros and ones in the palindromic
binary strings of length n.

9



Theorem 10 1. z̃2k = −25Fk + 2kFk−1 + 6
5kLk−1 for k ≥ 2; z̃2 = 2 and

z̃2k+1 = −45Fk + 4
5kLk for k ≥ 0.

2. w̃2k =
2
5Fk + 4kFk − 6

5kLk−1 for k ≥ 1 and w̃2k+1 = (2k + 1)Fk+1 +
4
5Fk − 4

5kLk for k ≥ 0.
3. Gz̃n(x)=

2(x2+x4+2x5+x6)
(1−x2−x4)2 and Gw̃n(x)=

x+2x2+x3+2x4−x5
(1−x2−x4)2 .

Proof: 1. From the palindromic creation process, we get the following
recursion:

z̃2k = z̃2k−2 + z̃2k−4 + 4ã2k−4 for k ≥ 3,
where the first two terms account for the “old” zeros, and the last term
accounts for the four additional zeros for each palindromic binary string of
length n− 4. Defining xk = z̃2k and using Theorem 9, part 1, we get

xk = xk−1 + xk−2 + 4Fk.

Following the steps in the proof of Theorem 3 and using the initial condi-
tions x1 = z̃2 = 2 and x2 = z̃4 = 6, we get the result for xk = z̃2k. Note
that the formula also holds for k = 2.
If n = 2k+1, we get z̃2k+1 = 2zk from the explicit representation for k ≥ 1.
The result then follows from Theorem 3 and also holds for k = 0.
2. This follows from z̃n + w̃n = n · ãn.
3. To compute Gz̃n(x) , we split the series into odd and even terms, sub-
stitute the formulas from part 1 and adjust for the fact that the formula
for even n only holds for n ≥ 4:

Gz̃n(x) =
∞X
l=0

z̃2l+1x
2l+1 +

∞X
l=1

z̃2lx
2l = x

∞X
l=0

z̃2l+1(x
2)l +

∞X
l=1

z̃2l(x
2)l

= x(−4
5
GFn(x

2) +
4

5
GnLn(x

2))

+
∞X
l=1

(−2
5
Fl + 2lFl−1 +

6

5
lLl−1)(x2)l +

12

5
x2

= x(−4
5
GFn(x

2) +
4

5
GnLn(x

2))− 2
5
GFn(x

2)

+2x2
∞X
l=1

((l − 1)Fl−1 + Fl−1)(x2)l−1

+
6

5
x2
∞X
l=1

((l − 1)Ll−1 + Ll−1)(x2)l−1 + 12
5
x2.

Changing the summation index, replacing the series by the corresponding
generating function, and then simplifying, gives the result.
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Since w̃n = n · ãn − z̃n, we get that Gw̃n(x) = x · d
dxGãn(x)−Gz̃n(x) (See

for example [8], Eq. (2.2.2), p. 34.) 2

As with the binary strings, we can ask about the total number of
runs of zeros and ones in the palindromic binary strings of length n.

Theorem 11 For k ≥ 1, t̃2k =
4
5kLk − 1

10(17Fk + 5Lk) and t̃2k+1 =
1
10(15Lk − 21Fk) + k

5 (10Fk − 2Lk), with t̃1 = 1 and generating function

Gt̃n(x)=
1+x3+2x5+x6+2x8−3x9

(1−x2−x4)2 .

Proof: With an argument similar to that in Theorem 4, and using Theo-
rem 9, we get

t̃n = t̃n−2 + t̃n−4 + 2(ãn−2,0 + ãn−4,1)

= t̃n−2 + t̃n−4 +
½
4Fk−1 for n = 2k
4Fk−2 for n = 2k + 1

,

where the factor of two for the additional runs comes from the fact that
we append on both sides. Making the substitution xk = t̃2k or xk = t̃2k+1,
we can now proceed as in the proof of Theorem 3. For n = 2k, we get
A = B = 4/5, and using the initial conditions t̃2 = x1 = 2, t̃4 = x2 = 5
results in c1 = −12 + 17

50

√
5 and c2 = −12 − 17

50

√
5. For n = 2k + 1, we

get A = 2
5(
√
5− 1) and B = −25(

√
5 + 1), and using the initial conditions

t̃3 = x1 = 1, t̃5 = x2 = 4 results in c1 =
3
50(25−7

√
5) and c2 =

3
50(25+7

√
5).

The generating function is computed as in the proof of Theorem 10, with
an adjustment for the value of t̃1. 2

We now look at the total number of rises, levels and drops in all
palindromic binary strings of length n. As before, we have r̃n = d̃n and

r̃n + l̃n + d̃n = (n− 1)ãn =
½
(n− 1)Fk+2 for n = 2k
(n− 1)Fk+1 for n = 2k + 1

. (4)

Theorem 12 For k ≥ 1, l̃2k = 1
10(5Lk − 17Fk) + k

5 (Lk + 15Fk) and

l̃2k+1 =
1
5(13Fk−5Lk)+ k

5 (7Lk−5Fk), with l̃1 = 0 and generating function
Gl̃n(x)=

x2(2+2x+3x2+2x3+3x4−2x5−x6+2x7)
(1−x2−x4)2 .

11



Proof: Similar to the proof of Theorem 5, and with the additional factors
of 2 as in the proof of Theorem 11, we get for n ≥ 5:

l̃n = (l̃n−2 + 2ãn−2,1) + (l̃n−4 + 4ãn−4,0 + 2ãn−4,1).

Using Theorem 9 and the Fibonacci recurrence, this reduces to

l̃n = l̃n−2 + l̃n−4 +
½
4Fk + 2Fk−2 for n = 2k
4Fk−1 + 2Fk−3 for n = 2k + 1

.

Making the substitution xk = l̃2k or xk = l̃2k+1, we can now proceed

as in the proof of Theorem 3. For n = 2k, we get A = 4(4+
√
5)

5(1+
√
5)
and

B = −4(4−
√
5)

5(1−√5) . Using the initial conditions l̃2 = x1 = 2, l̃4 = x2 = 7 results

in c1 =
1
2 − 17

50

√
5 and c2 =

1
2 +

17
50

√
5. For n = 2k+ 1, we get A = 4(4+

√
5)

5(3+
√
5)

and B = 4(4−√5)
5(3−√5) . Using the initial conditions l̃3 = x1 = 2, l̃5 = x2 = 6

results in c1 = −1+ 13
25

√
5 and c2 = −1− 13

25

√
5, which gives the result for l̃n

for n ≥ 5. Note that the formula also holds for 2 ≤ n ≤ 4. The generating
function Gl̃n(x) is computed as

Gl̃n(x) = x

µ
13

5
GFn(x

2)−GLn(x2) +
7

5
GnLn(x

2)−GnFn(x2)
¶

+
1

2
GLn(x

2)− 17
10
GFn(x

2) +
1

5
GnLn(x

2) + 3GnFn(x
2)

and simplification yields the result. 2

Corollary 13 For k ≥ 1, r̃2k = d̃2k = 1
2(2k − 1)Fk+2 − 1

20(5Lk − 17Fk)−
k
10(Lk+15Fk) and r̃2k+1 = d̃2k+1 = kFk+1− 1

10(13Fk−5Lk)− k
10(7Lk−5Fk),

with r̃1 = 0 and generating function Gr̃n(x)=
x4(1+x+x2+x3+x4−x5)

(1−x2−x4)2 .

Proof: Follows immediately from Theorem 12 and Eq. (4). Since r̃n =
1
2(nãn − ãn − l̃n), the generating function can be computed as Gr̃n(x) =
1
2 [x · ddxGãn(x)−Gãn(x)−Gl̃n(x)]. 2

Finally, we look at the palindromic binary strings as base 2 repre-
sentations of decimal integers. First we give a formula for the sum of all
the decimal values of the palindromic binary strings of length n.

Theorem 14 For k ≥ 1, ṽ2k = 3
222

k(Fk−Lk)+ 2
114

k(2Lk+3Fk)− 1
22(5Lk+

9Fk) and ṽ2k+1 =
9
222

k(Fk + Lk) +
2
114

k(Lk + 7Fk) − 1
11(Lk + 4Fk) with

12



ṽ1 = 1 and generating function

Gṽn(x)=
x(1+3x+3x3−21x4−30x5−24x7+16x8)
(1−x2−x4)(1−2x2−4x4)(1−4x2−16x4) .

Proof: We proceed as in the proof of Theorem 7, except that now we also
have to take into account the changes on the left side. When appending a
1 to the right and left sides of a palindromic binary string of length n− 2,
we get an additional 2n−1 from the left side. When appending 00 on the
right and left sides of a palindromic binary string of length n− 2, the left
side does not contribute anything to the decimal value. Thus, we get the
following recursion for n ≥ 5:

ṽn = (2ṽn−2 + ãn−2 + 2n−1 · ãn−2) + 4 · ṽn−4,
with initial conditions ṽ1 = 1, ṽ2 = 3, ṽ3 = 7, and ṽ4 = 24. Using
Theorem 9, this reduces to

ṽn = 2ṽn−2 + 4ṽn−4 + (2n−1 + 1) ·
½
Fk+1 for n = 2k
Fk for n = 2k + 1

.

Making the usual substitution xk = ṽ2k and xk = ṽ2k+1, respectively, we
get a general solution of the form

xk = c1(2α)
k + c2(2β)

k +Aαk +Bβk + C(4α)k +D(4β)k

due to the factor of 2n−1 for the Fibonacci term. We proceed as in the
proof of Theorem 3. For n = 2k, we get A = −25+9

√
5

110 , B = −25−9
√
5

110 , C =
40+12

√
5

110 , and D = 40−12√5
110 . The initial conditions give c1 = −3

√
5

110 (1−
√
5)

and c2 = −3
√
5

110 (1 +
√
5). For n = 2k + 1, A = −5+4

√
5

55 , B = − 5−4
√
5

55 ,

C = 10+14
√
5

55 , and D = 10−14√5
55 . Here, the initial conditions give c1 =

9
110(5 +

√
5) and c2 =

9
110(5 −

√
5). The generating function is computed

as in the proof of Theorem 12. In particular,

Gṽn(x) = x

∙
9

22
(GFn(2x

2) +GLn(2x
2)) +

2

11
(GLn(4x

2) + 7GFn(4x
2))

− 1
11
(GLn(x

2) + 4GFn(x
2))

¸
+

∙
3

22
(GFn(2x

2)−GLn(2x2))

+
2

11
(2GLn(4x

2) + 3GFn(4x
2))− 1

22
(5GLn(x

2) + 9GFn(x
2))

¸
which gives the result after substitution and simplification. 2

Finally, we examine the following.

13



Theorem 15 For n = 2k, the decimal value of each individual palindromic
binary string of length n is congruent to 0 (mod 3), and ṽ2k ≡ 0 (mod 3)
also. For n = 2k+1, the decimal value of each individual palindromic binary
string of length n is congruent to 1 (mod 3), and ṽ2k+1 ≡ Fk+1 (mod 3).

Proof: The proof follows along the lines of the proof of Theorem 8. We
show the congruence for the individual terms by induction. The basic step
for the induction follows from Theorem 8. We now assume the induction
hypothesis and utilize the palindromic creation process. If we append 00
on both sides, then this corresponds to multiplication by 4 ≡ 1 (mod 3) of
the value for a string of length n− 4 and the result follows. If we append
a 1 on each side of a palindromic binary string of length n − 2, then this
corresponds to multiplication by 2 of the value of the string of length n− 2
and addition of 2n−1+1. Since 22k (mod 3) ≡ 4k (mod 3) ≡ 1 (mod 3), we
get for n = 2k, that the string’s value is (using the hypothesis) congruent
to 2· 0 (mod 3) + (22k−1 + 1) (mod 3) ≡ (0+2·22(k−1) + 1) (mod 3) ≡
(0+2·1+1) (mod 3) ≡ 0 (mod 3) . For n = 2k + 1, the string’s value is
(using the hypothesis) congruent to 2· 1 (mod 3) + (22k + 1) (mod 3) ≡
(2+1+1) (mod 3) ≡1 (mod 3). The result for ṽ2k+1 follows because there
are Fk+1 palindromic binary strings of length 2k + 1. 2

5 Connection to Compositions with Odd Sum-
mands

We now discuss the connection between binary strings of length n− 1 and
compositions of n with odd summands. We can visualize a composition of n
as a board of size 1-by-n inches with potential cutting sites after each inch.
At each potential cutting site, we either cut or do not cut, and the lengths of
the resulting pieces will determine the summands in the composition. The
cutting instruction for a composition of n can be given by a binary string
of length n − 1, where a 0 indicates “no cut”, and a 1 indicates “cut”, as
shown in Figure 1.

Since an even number of “no cuts” results in a piece of odd length,
there is a one-to-one correspondence between the compositions of n with
only odd summands and the binary strings of length n−1 with no odd runs
of zeros. Grimaldi [5] has investigated compositions with odd summands,
and looked at the occurrences of individual summands, and the number
of summands, “+”-signs, levels, rises and drops. However, the one-to-
one correspondence between the total number of compositions of n + 1

14



0 0 1 1 1 0 0 0 0 1

3 1 1 5 1+ + + +

Figure 1: A composition and its binary string cutting instruction

with odd summands and the binary strings of n with no odd runs of zero
does not extend automatically to these quantities. The only one-to-one
correspondence is between sn+1, the number of “+” signs in compositions
of n+1 with odd summands and wn, the number of 1’s in binary strings of
n. This can be easily seen since every 1 results in a cut which creates two
pieces and therefore has to correspond to a “+” sign. The two formulas
look somewhat different (Section 3 [5] and Theorem 3):

sn+1 = (−1/5)Fn+1 + (1/5)(n+ 1)Ln+1 for n ≥ 1
and

wn = (2/5)Fn + (1/10)nLn + (1/2)nFn for n ≥ 1,
but can be shown to be equivalent by first using the fact that Ln+1−Fn+1 =
2Fn (see proof of Theorem 3, part 2) and then showing the remaining
equality using the Binet forms for Fn and Ln.
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