HOW TO WIN IN SLOW EXACT k-NIM

Silvia Heubach

Department of Mathematics, Cal State LA

Matthieu Dufour

University of Quebec at Montreal
Combinatorial Game Theory Colloquium IV São Miguel, Azores, January 23, 2023

Slow Exact k-NIM SN (n, k)

- Play on n stacks of tokens
- Move consists of
- Picking exactly k of the stacks
- Removing one token from each of the selected stacks
- Last person to make a move wins

Known Results

Gurvich et al. [2020] Slow k-Nim.
Chickin et al. [2021] More about Slow Exact k-Nim.

$n \backslash k$	1	2	3	4	5	6	\ldots
1	$\mathrm{SN}(1,1)$						
2	$\mathrm{SN}(2,1)$	$\mathrm{SN}(2,2)$					
3	$\mathrm{SN}(3,1)$	$\mathrm{SN}(3,2)$	$\mathrm{SN}(3,3)$				
4	$\mathrm{SN}(4,1)$	$\mathrm{SN}(4,2)$	$?$	$\mathrm{SN}(4,4)$			
5	$\mathrm{SN}(5,1)$	$\mathrm{SN}(5,2)$	$?$	$?$	$\mathrm{SN}(5,5)$		
6	$\mathrm{SN}(6,1)$	$\mathrm{SN}(6,2)$	$?$	$?$	$?$	$\mathrm{SN}(6,6)$	
7	$\mathrm{SN}(7,1)$	$?$	$?$	$?$	$?$	$?$	
\vdots	\vdots	\vdots	\vdots	\vdots	\vdots	\ddots	\ddots

- Two infinite families of games: $\operatorname{SN}(n, 1)$ and $\operatorname{SN}(n, n)$ which are deterministic.
- P-positions are
- $\operatorname{SN}(n, 1): \operatorname{sum}(p)$ is even.
- $\operatorname{SN}(n, n): \min (p)$ is even.

Our Results

$n \backslash k$	1	2	3	4	5	6	\ldots
1	$\operatorname{SN}(1,1)$						
2	$\operatorname{SN}(2,1)$	$\operatorname{SN}(2,2)$					
3	$\operatorname{SN}(3,1)$	$\operatorname{SN}(3,2)$	$\operatorname{SN}(3,3)$				
4	$\operatorname{SN}(4,1)$	$\operatorname{SN}(4,2)$	$\operatorname{SN}(4,3)$	$\operatorname{SN}(4,4)$			
5	$\operatorname{SN}(5,1)$	$\operatorname{SN}(5,2)$	$?$	$\operatorname{SN}(5,4)$	$\operatorname{SN}(5,5)$		
6	$\operatorname{SN}(6,1)$	$\operatorname{SN}(6,2)$	$?$	$?$	$\operatorname{SN}(6,5)$	$\operatorname{SN}(6,6)$	
7	$\operatorname{SN}(7,1)$	$?$	$?$	$?$	$?$	$\operatorname{SN}(7,6)$	
\vdots	\vdots	\vdots	\vdots	\vdots	\vdots	\ddots	\ddots

P-positions of a non-trivial infinite family, $\operatorname{SN}(n, n-1)$, where play is on all but one stack

Results for P-Positions of Slow Exact k-NIM, $k=n-1$

Characterization of P -positions:

- $s=\operatorname{sum}(\boldsymbol{p}) \bmod d$ where $d=k$ when n is even and $d=2 k$ when n is odd
- $\boldsymbol{o}=\#$ of stacks with odd stack heights

$$
n=10, k=9, s=\operatorname{sum}(\boldsymbol{p}) \bmod 9
$$

$$
n=9, k=8, s=\operatorname{sum}(\boldsymbol{p}) \bmod 16
$$

s $\backslash 0$	0	1	2	3	4	5	6	7	8	9	10
0											
1											
2											
3											
4											
5											
6											
7											
8											

These results are for REDUCED positions.

$\mathbf{s ~ \backslash o ~}$	0	1	2	3	4	5	6	7	8	9
0										
1										
2										
3										
4										
5										
6										
7										
8										
9										
10										
11										
12										
13										
14										
15										

Reduced Positions - Motivation - SN(3,2)

Game trees are isomorphic - same outcome
$\mathbf{p}=(1,1,2)$ is the reduced position for $\mathbf{p}=(1,1,2+m)$ with $m \geq 0$

Reduced Positions - Definition

Definition: A position is reduced if, for each stack, there exists a sequence of legal moves that deplete the stack.

Difficult to check, not useful for proofs

Theorem

A position is reduced if and only if the NIRB (No stack Is Really Big) condition

$$
\max (\boldsymbol{p}) \leq \frac{\operatorname{sum}(\boldsymbol{p})}{k}
$$

is satisfied.

Outline of Proof of our Results

- Reduce initial position using the NIRB condition repeatedly
- For each position, a move is either to a reduced position or a position that needs to be reduced.
- Characterize when reduction is needed and what reduced position looks like
- Then show that
- from each P-position, all moves lead to N-positions
- from each N-position, there is at least one move to a P-position

s\o	0	1	2	3	4	5	6	7	8	9	10
0											
1											
2											
3											
4											
5											
6											
7											
8											

Reduction Criterion for even n

$\boldsymbol{p}=\left(p_{1}, p_{2}, \ldots, p_{n}\right)$ with $p_{1} \leq p_{2} \leq \ldots \leq p_{n}$

Lemma: When reduction is needed from a position characterized by (s, o) and \boldsymbol{p} has $\alpha \geq 1$ maximal stacks, then the reduced position is given by

$$
r\left(\boldsymbol{p}^{\prime}\right)= \begin{cases}\left(p_{1}-1, p_{2}-1, \ldots, p_{n}-1\right) & \text { if } s>0 \\ \left(p_{1}-1, p_{2}-1, \ldots, p_{n-\alpha}-1, p_{n}-2, \ldots, p_{n}-2\right) & \text { if } s=0\end{cases}
$$

- If $s>0$, then $\left(s^{\prime}, o^{\prime}\right)=(s-1, n-o)$;
- If $s=0$, then $\alpha \leq n-2$ and

$$
s^{\prime}=n-2-\alpha \text { and } o^{\prime}= \begin{cases}n-o-\alpha & \text { if } p_{n} \text { is even } \\ n-o+\alpha & \text { if } p_{n} \text { is odd }\end{cases}
$$

Illustration for n even - P-Position leads to N-Position

3 cases:

$\boldsymbol{s}=\operatorname{sum}(\boldsymbol{p}) \bmod \boldsymbol{k}$

- Move to position that is reduced
- Move to a position that needs reduction; $s>0$ and $s=0$

Case 1: No reduction \rightarrow remove exactly k tokens:

- $s^{\prime}=s \rightarrow$ same row;
- $o^{\prime} \in\{n-o-1, n-o+1\} \begin{aligned} & \text { depending on } \\ & \text { parity of un- }\end{aligned}$ played stack
\rightarrow reflect cell across column \subset and then go either left or right

Illustration for n even - P-Position leads to N-Position

Case 3: Move is to a position that needs reduction when $s=0$ Take a token from all stacks, and an additional token from the maximal stacks

- $s^{\prime}=n-2-\alpha$ and $o^{\prime}=\left\{\begin{array}{ll}n-o-\alpha & \text { if } p_{n} \text { is even } \\ n-o+\alpha & \text { if } p_{n} \text { is odd }\end{array}\right.$ with $1 \leq \alpha \leq n-2$

Illustration for n even: N-position to P-position

- No reduction - same row, reflection across midline, then to left or right depending on parity of max
- Yellow and orange squares are the only ones with potential trouble

For orange squares need to check on reduction move, and it turns out this one is available.

Ongoing and Future Work

Generalization to Slow SetNIM SN (n, A), where the set A indicates the possible numbers of stacks one can play on

Develop a NIRB condition for the game with set \boldsymbol{A}

$$
\max (\boldsymbol{p}) \leq \frac{\operatorname{sum}(\boldsymbol{p})}{k}, \quad \text { where } k=\min (\boldsymbol{A})
$$

- Develop characterization when reduction is needed
- depends on the individual game
- Determine what reduced position looks like
- depends on the individual game

Analyze some games

- we have the result for $A=\{n-1, n\}$

Results for P-Positions of Slow SetNIM SN($n,\{\boldsymbol{n}-\mathbf{1}, \boldsymbol{n}\})$

$$
n=10, k=9, s=\operatorname{sum}(\boldsymbol{p}) \bmod 9
$$

s\0	0	1	2	3	4	5	6	7	8	9	10
0											
1											
2											
3											
4											
5											
6											
7											
8											X

$o=\#$ of stacks with odd stack heights

- Looks very much like $\mathrm{SN}(n, n-1)$
- Only difference: P-positions with $o=n$ are removed
$n=9, k=8, s=\operatorname{sum}(\boldsymbol{p}) \bmod 16$

s do	0	1	2	3	4	5	6	7	8	9
0										
1										
2										
3										
4										
5										
6										
7										X
8										
9										
10										
11										
12										
13										
14										
15										

THANK YOU!

Any

questions?

You can reach me at sheubac@calstatela.edu

References

- V. Gurvitch, S. Heubach, N.H. Ho, and N. Chickin (2020) Slow k-Nim. Integers 20, Paper No. G3, 19 pages
- N. Chickin, V. Gurvitch, K. Knop, M. Paterson, and M. Vyalyi (2021) More about Slow Exact k-Nim. Integers 21, Paper No. G4, 14 pages

Image citation

- By Firdausi - http://history.chess.free.fr/sources.htm, Public Domain https://commons.wikimedia.org/w/index.php?curid=13374161
- Royal Game of Ur, southern Iraq, about 2600-2400 BCE, By BabelStone (Own work), CC0, https://commons.wikimedia.org/w/index.php?curid=10861909
- Hnefatafl reconstruction, By Matěj Batha - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=25070387
- http://www.britgo.org/node/4812
- https://en.wikipedia.org/wiki/Mancala\#/media/File:Bao players in stone town zanzibar.jpg

