HOW TO WIN IN SLOW EXACT *k*-NIM

Silvia Heubach

Department of Mathematics, Cal State LA

Matthieu Dufour

University of Quebec at Montreal

Combinatorial Game Theory Colloquium IV

São Miguel, Azores, January 23, 2023

Slow Exact k-NIM SN(n, k)

- Play on n stacks of tokens
- Move consists of
 - Picking exactly k of the stacks
 - Removing one token from each of the selected stacks
- Last person to make a move wins

Known Results

Gurvich et al. [2020] Slow *k*-Nim. Chickin et al. [2021] More about Slow Exact *k*-Nim.

$n \backslash k$	1	2	3	4	5	6	
1	SN(1,1)						
2	SN(2,1)	SN(2,2)					
3	SN(3,1)	SN(3,2)	SN(3,3)				
4	SN(4,1)	SN(4,2)	?	SN(4,4)			
5	SN(5,1)	SN(5,2)	?	?	SN(5,5)		
6	SN(6,1)	SN(6,2)	?	?	?	SN(6,6)	
7	SN(7,1)	?	?	?	?	?	
:	:	÷	:	:	•	•.	•.

- Two infinite families of games: SN(n, 1) and SN(n, n) which are deterministic.
- P-positions are
 - SN(n, 1): sum(p) is even.
 - **SN**(*n*, *n*): min(p) is even.

Our Results

P-positions of a non-trivial infinite family, SN(n, n - 1), where play is on all but one stack

Results for P-Positions of Slow Exact k-NIM, k = n - 1

Characterization of P-positions:

- $s = sum(p) \mod d$ where d = k when n is even and d = 2k when n is odd
- o = # of stacks with odd stack heights

 $n = 10, k = 9, s = sum(p) \mod 9$

These results are for **REDUCED** positions.

 $n = 9, k = 8, s = sum(p) \mod 16$

Reduced Positions – Motivation – SN(3,2)

Game trees are isomorphic – same outcome

 $\mathbf{p} = (1,1,2)$ is the reduced position for $\mathbf{p} = (1,1,2+m)$ with $m \ge 0$

Reduced Positions - Definition

Definition: A position is **reduced** if, for each stack, there exists a sequence of legal moves that deplete the stack.

Difficult to check, not useful for proofs

Theorem

A position is reduced **if and only if** the **NIRB** (No stack Is Really Big) **condition**

$$\max(\boldsymbol{p}) \leq \frac{\operatorname{sum}(\boldsymbol{p})}{k}$$

is satisfied.

Outline of Proof of our Results

- Reduce initial position using the NIRB condition repeatedly
- For each position, a move is either to a reduced position or a position that needs to be reduced.
- Characterize when reduction is needed and what reduced position looks like
- Then show that
 - from each P-position, all moves lead to N-positions
 - from each N-position, there is at least one move to a P-position

Reduction Criterion for even n

 $\boldsymbol{p} = (p_1, p_2, \dots, p_n) \text{ with } p_1 \leq p_2 \leq \dots \leq p_n$

Lemma: When reduction is needed from a position characterized by (s, o) and p has $\alpha \ge 1$ maximal stacks, then the reduced position is given by

$$r(\mathbf{p}') = \begin{cases} (p_1 - 1, p_2 - 1, \dots, p_n - 1) & \text{if } s > 0\\ (p_1 - 1, p_2 - 1, \dots, p_{n-\alpha} - 1, p_n - 2, \dots, p_n - 2) & \text{if } s = 0 \end{cases}$$

• If
$$s > 0$$
, then $(s', o') = (s - 1, n - o)$;

If
$$s = 0$$
, then $\alpha \le n - 2$ and
 $s' = n - 2 - \alpha$ and $o' = \begin{cases} n - o - \alpha & \text{if } p_n \text{ is even} \\ n - o + \alpha & \text{if } p_n \text{ is odd} \end{cases}$

Illustration for n even – P-Position leads to N-Position

s = sum(p) mod k
o = # of odd stacks

- Move to position that is reduced
- Move to a position that needs reduction; s > 0 and s = 0

<u>Case 1</u>: No reduction \rightarrow remove exactly k tokens:

•
$$s' = s \rightarrow \text{same row};$$

3 cases:

•
$$o' \in \{n - o - 1, n - o + 1\}$$
 depending on
parity of un-
played stack

 \rightarrow reflect cell across column ℓ and then go either left or right

Illustration for n even – P-Position leads to N-Position

<u>Case 3:</u> Move is to a position that needs reduction when s = 0

 Take a token from all stacks, and an additional token from the maximal stacks

•
$$s' = n - 2 - \alpha$$
 and $o' = \begin{cases} n - o - \alpha & \text{if } p_n \text{ is even} \\ n - o + \alpha & \text{if } p_n \text{ is odd} \end{cases}$ with $1 \le \alpha \le n - 2$

Illustration for n even: N-position to P-position

- No reduction same row, reflection across midline, then to left or right depending on parity of max
- Yellow and orange squares are the only ones with potential trouble

Yellow squares can be shown to have non-reduction move available

For orange squares need to check on reduction move, and it turns out this one is available.

Ongoing and Future Work

Generalization to Slow SetNIM SN(n, A), where the set A indicates the possible numbers of stacks one can play on

✓ Develop a NIRB condition for the game with set Amax(p) ≤ $\frac{\text{sum}(p)}{k}$, where $k = \min(A)$

- Develop characterization when reduction is needed
 - depends on the individual game
- Determine what reduced position looks like
 - depends on the individual game
- Analyze some games

- we have the result for $A = \{n - 1, n\}$

Results for P-Positions of Slow SetNIM $SN(n, \{n - 1, n\})$

 $n = 10, k = 9, s = \operatorname{sum}(\boldsymbol{p}) \mod 9$

o = # of stacks with odd stack heights

- Looks very much like SN(n, n-1)
- Only difference: P-positions with
 o = n are removed

$n = 9, k = 8, s = \operatorname{sum}(\boldsymbol{p}) \mod 16$

THANK YOU!

Any questions?

You can reach me at sheubac@calstatela.edu

References

- V. Gurvitch, S. Heubach, N.H. Ho, and N. Chickin (2020) Slow k-Nim. Integers 20, Paper No. G3, 19 pages
- N. Chickin, V. Gurvitch, K. Knop, M. Paterson, and M. Vyalyi (2021) More about Slow Exact *k*-Nim. *Integers* **21**, Paper No. G4, 14 pages

Image citation

- By Firdausi http://history.chess.free.fr/sources.htm, Public Domain https://commons.wikimedia.org/w/index.php?curid=13374161
- Royal Game of Ur, southern Iraq, about 2600-2400 BCE, By BabelStone (Own work), CC0, <u>https://commons.wikimedia.org/w/index.php?curid=10861909</u>
- Hnefatafl reconstruction, By Matěj Baťha Own work, CC BY-SA 3.0, <u>https://commons.wikimedia.org/w/index.php?curid=25070387</u>
- http://www.britgo.org/node/4812
- <u>https://en.wikipedia.org/wiki/Mancala#/media/File:Bao_players_in_stone_town_zanzibar.jpg</u>