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Abstract

Given a finite set D of positive integers, the distance graph G(Z,D) has Z

as the vertex set and {ij : |i−j| ∈ D} as the edge set. Given D, the asymptotic
clique covering ratio is defined as S(D) = lim sup

n→∞

n
cl(n) , where cl(n) is the min-

imum number of cliques covering any consecutive n vertices of G(Z,D). The

parameter S(D) is closely related to the ratio spT(G)
χ(G) of a graph G, where χ(G)

and spT(G) denote, respectively, the chromatic number and the optimal span
of a T -coloring of G. We prove that for any finite set D, S(D) is a rational
number and can be realized by a “periodical” clique covering of G(Z,D). Then
we investigate the problem for which sets D the equality S(D) = ω(G(Z,D))
holds. (In general, S(D) ≤ ω(G(Z,D)), where ω(G) is the clique number of G.)
This problem turns out to be related to T -colorings and to fractional chromatic
number and circular chromatic number of distance graphs. Through such con-
nections, we shall show that the equality S(D) = ω(G(Z,D)) holds for many
classes of distance graphs. Moreover, we raise questions regarding other such
connections.
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†Supported in part by the National Science Council, R. O. C., under grant NSC87-2115-M110-
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1 Introduction

Let D be a set of positive integers, the distance graph generated by D, denoted by

G(Z,D), has all the integers Z as the vertex set, and two vertices are adjacent if

their absolute difference falls within the set D. The set D is called the distance set

(or D-set for short) of the graph G(Z,D). For n ≥ 1, we denote by G(n,D) the

subgraph of G(Z,D) induced by the set of vertices {0, 1, · · · , n−1}. The study of the

chromatic number of distance graphs was initiated by Eggleton, Erdős and Skilton

[10]. Their motivation was to study the 1-dimensional analogous of the well-known

plane coloring problem (i.e., finding the minimum number of colors needed to color

the plane so that no two points of unit distance are colored the same color). Later on,

it was found that the chromatic number and fractional chromatic number of distance

graphs are related to many other problems, such as T -colorings [3, 24], diophantine

approximations [35], density of D-sets [15] and circulant graphs [20], etc.

Focusing on finite distance sets D, we consider the problem of covering the

vertices of distance graphs G(Z,D) by cliques. This problem is equivalent to proper

vertex-coloring the complement of G(Z,D), which is also a distance graph whose

distance set is Z+ −D. In this sense, we are still considering vertex-coloring problem

for distance graphs. We choose to use the language of clique-covering instead of

vertex-coloring because it is easier to deal with distance graphs whose distance sets

are finite. A useful observation in coloring distance graphs is that we only need to

color the subgraph of G(Z,D) induced by the set of non-negative integers {0, 1, · · ·}.

Therefore, throughout the article (especially in Sections 2 and 3), unless indicated,

we shall restrict our discussion of clique coverings to this subgraph.

Our study of clique covering of distance graphs with finite distance sets is mo-
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tivated by problems concerning T -colorings which arose from the channel assign-

ment problem introduced by Hale [16]. Given a finite set T (called T -set) of non-

negative integers with 0 ∈ T , a T -coloring of a graph G = (V,E) is a mapping

φ : V → {0, 1, 2, · · ·} such that if xy ∈ E(G), then |φ(x) − φ(y)| /∈ T . The span of

a T -coloring φ of G is defined as spT,φ(G) = maxφ(V) − minφ(V). The T -span of G

denoted by spT(G) is defined as min{spT,φ(G) : φ is a T -coloring of G}.

Given a D-set, denote the complement of G(Z,D) by G(Z,D) (similarly for

G(n,D)). A homomorphism from a graph G = (V,E) to another graph H = (V ′, E ′)

is a mapping h : V → V ′ such that h(x)h(y) is an edge of H whenever xy is an edge

of G. Let D = T − {0}, a T -coloring of G is a homomorphism from G to G(Z,D)

and vice versa. Thus, an equivalent definition of spT(G) is

spT(G) = min{n − 1 : G admits a homomorphism to G(n,D) } where D = T − {0}.

It is usually very difficult to determine the minimum span spT(G) of a graph

G. Much of the earlier efforts in the study of T -coloring have been focused on finding

upper and lower bounds of spT(G) in terms of other parameters such as ω(G), the

clique number (i.e., the size of a maximum clique in G), and χ(G), the chromatic

number of G [5, 28, 21, 22, 27]. For a given T -set, let σn denote the minimum span

of Kn. It is easy to see that σω(G) ≤ spT(G) ≤ σχ(G) [5].

We are interested in the ratio spT(G)
χ(G)

. The two parameters spT(G) and χ(G) are

certainly closely related to each other. For instance, when χ(G) goes to infinity, then

so does spT(G). We are interested in finding quantitative relations between these two

parameters. In particular, we shall investigate the range of the ratio spT(G)
χ(G)

.

An upper bound of spT(G)
χ(G)

can be obtained easily as follows. Because spT(G) ≤

σχ(G) for any graph G, we have

spT(G)

χ(G)
≤
σχ(G)

χ(G)
.

In the case that G = Kn, then spT(G)
χ(G)

=
σχ(G)

χ(G)
= σn

n
. So the upper bound for spT(G)

χ(G)
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above is sharp. Note that σn

n
is bounded, since σn ≤ n× (max{d : d ∈ D} + 1).

The asymptotic ratio R(T ) = lim
n→∞

σn

n
has been studied by several authors.

It was proved independently and differently by Rabinowitz and Proulx [26] and by

Griggs and Liu [15] that for any given finite T -set, R(T ) exists and is a rational

number ≥ 2, except when T = {0}, R(T ) = 1. Moreover, the difference sequence

{σn+1−σn}
∞
n=1 is eventually periodic [15]. It was noted in [15] that R(T ) is equivalent

to the reciprocal of “density of sequences with missing distances,” an earlier number

theory problem studied by Cantor and Gordon [1] and by Haralambis [17].

The study of the clique covering of the distance graphs arises from the approach

of the lower bound of the ratio spT(G)
χ(G)

. Suppose spT(G) = n − 1, then G admits a

homomorphism to G(n,D), where D = T − {0}. Note that a proper k-coloring of a

graph G is simply a homomorphism of G to Kk. Since homomorphism (considered as

a binary relation on the set of graphs) is transitive (i.e., if H admits a homomorphism

to H ′ and H ′ admits a homomorphism to H ′′ then H admits a homomorphism to

H ′′), we know that χ(G) ≤ χ(G(n,D)). Therefore

spT(G)

χ(G)
≥

n− 1

χ(G(n,D))
.

By taking G = G(n,D) such that G(n,D) is a core (i.e., G(n,D) does not admit

a homomorphism to any of its proper subgraphs, for example, we may choose n =

spT(Km) + 1 for some integer m), we know that the lower bound for the ratio spT(G)
χ(G)

above is also sharp.

Similarly to the study of the parameter R(T ), we investigate the asymptotic

ratio lim sup
n→∞

n

χ(G(n,D))
. (As n goes to infinity, we may ignore the minus 1 in the

numerator.) The clique covering number cl(G) of a graph G is the minimum number

k such that there exist k cliques in G that cover all vertices of G. It is easy to see that

χ(G) = cl(G) holds for any graph G. This leads to the definition of the asymptotic
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clique covering ratio S(D) of a distance graph G(Z,D):

S(D) = lim sup
n→∞

n

cl(G(n,D))
.

In this article, we shall prove that for any given finite D-set, S(D) is a rational

number. Moreover, S(D) can be obtained by a “periodical” pattern of clique covering

of G(Z,D).

Intuitively, S(D) is the average size of the cliques in an optimal clique covering

of G(Z,D), and it measures how efficiently one can cover the vertices of G(Z,D) by

cliques, i.e., using as few cliques as possible. Hence a trivial upper bound for S(D) is

S(D) ≤ ω(G(Z,D)).

The class of distance graphs such that S(D) = ω(G(Z,D)) is related to many

other well studied classes of graphs. In the study of T -colorings, those T -sets for

which spT(G) = spT(Kχ(G)) for every graph G were investigated by several authors

[5, 27, 21, 22, 24]. We shall show that if T is such a T -set, then S(D) = ω(G(Z,D)),

where D = T − {0}. We shall also give examples of sets D for which S(D) <

ω(G(Z,D)) as well as sets D for which S(D) = ω(G(Z,D)) but spT(G) 6= spT(Kχ(G))

for some graph G, where T = D ∪ {0}.

If S(D) = ω(G(Z,D)), then the vertices of G(Z,D) can be partitioned into

cliques of maximum size. This suggests that the complement G(Z,D) of the distance

graph G(Z,D) resembles a perfect graph. We are thus led to ask the questions regard-

ing the relations between the two classes of distance graphs, namely, distance graphs

G(Z,D) for which χ(G(Z,D)) = ω(G(Z,D)), and distance graphs G(Z,D) for which

S(D) = ω(G(Z,D)). In particular, whether or not one of the classes is a subset of the

other. We shall show that there are distance graphs for which S(D) = ω(G(Z,D))

but χ(G(Z,D)) 6= ω(G(Z,D)). However, we suspect that χ(G(Z,D)) = ω(G(Z,D))

may imply S(D) = ω(G(Z,D)). By discussing regular colorings of distance graphs,

we provide some support for this suspicion.
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2 Definitions and preliminary results

In the remaining part of this article, unless indicated, let D be a fixed finite set of

positive integers, and let d be the maximum element of D. For simplicity, we shall

denote the distance graph G(Z,D) by G.

Let f be a clique covering of G. We may regard f as a mapping that assigns

to each vertex x a color f(x). Since the vertices of the same color induce a clique in

G, the number of cliques covering a subset S ⊂ Z by f is |f(S)|. For i < j, we shall

denote by f [i, j] the subsequence (f(i), f(i + 1), · · · , f(j)), denote by f{i, j} the set

{a : a = f(`), i ≤ ` ≤ j}. Let f [i, .] denote the terminal segment of f starting at i,

let f [., i] denote the initial segment of f ending at i, and let f [., .] denote the whole

sequence f . The notations f{i, .}, f{., i} and f{., .} are defined analogously.

Definition 1 A clique covering sequence of G is an infinite sequence of integers

f = (f(0), f(1) · · ·) such that f(i) = f(j) implies that |i − j| ∈ D. A partial clique

covering sequence of G is a finite sequence f = (f(a), f(a + 1), · · · , f(k)) such that

f(i) = f(j) implies that |i− j| ∈ D.

The following lemma follows directly from the definition.

Lemma 1 An infinite sequence f is a clique covering sequence of G if and only if

f(i) 6= f(j) when i ≤ j − d− 1, and for any i, f [i, i + d] is a partial clique covering

sequence of G.

Definition 2 If f [i, j], i < j, is a partial clique covering sequence of G, then the

covering ratio of f [i, j] is defined as

Sf [i,j] =
j − i + 1

|f{i, j}|
.

If f = (f(0)f(1) · · ·) is a clique covering sequence of G, the asymptotic covering ratio

of f , denoted by Sf , is defined as

Sf = lim sup
n→∞

n

|f{0, n− 1}|
.
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Two clique covering sequences f and f ′ are isomorphic if there is a one-to-one

mapping σ : f{., .} → f ′{., .} such that for all x, f ′(x) = σ(f(x)). Two partial clique

covering sequences f [i, i+ k] and f ′[j, j + k′] are isomorphic, denoted by f [i, i+ k] ≡

f ′[j, j + k′], if they have the same length (i.e., k = k′) and there is a one-to-one onto

mapping σ : f{i, i + k} → f ′{j, j + k′} such that for all 0 ≤ x ≤ k, f ′(j + x) =

σ(f(i + x)). We call f a periodical clique covering if there exists an integer p ≥ 2d

such that f [0, .] and f [p, .] are isomorphic.

Definition 3 Suppose f is a clique covering sequence or a partial clique covering

sequence such that f [i, i + 2d] ≡ f [j, j + 2d]. Then f [i, j − 1] is called a complete

segment of f . The adjusted covering ratio of a complete segment f [i, j− 1] is defined

as

ASf [i,j−1] =
j − i

|f{i, j − 1} − f{j, j + 2d}|
.

Note that the adjusted covering ratio of a complete segment f [i, j− 1] is no less

than the covering ratio of the subsequence f [i, j − 1], i.e., Sf [i,j−1] ≤ ASf [i,j−1].

Definition 4 Suppose f = (f(0)f(1) · · ·f(k)) is a partial clique covering sequence

of G and f [i, j − 1] is a complete segment of f . Let σ : f{j, j + 2d} → f{i, i +

2d} be a mapping such that σ(f(j + t)) = f(i + t) for t = 0, 1, · · · , 2d. Let f ′ =

(f ′(0), f ′(1), · · · , f ′(k − j + i)) be the sequence defined by:

f ′(x) =











f(x), if x ≤ i;
σ(f(x+ j − i)), if x ≥ i+ 1 and f(x + j − i) ∈ f{j, j + 2d};
f(x+ j − i), if x ≥ i+ 1 and f(x + j − i) 6∈ f{j, j + 2d}.

Then f ′ is called the sequence obtained from f by cutting off the complete segment

f [i, j − 1].

Lemma 2 Suppose f = (f(0), f(1), · · ·f(k)) is a partial clique covering sequence of

G and f [i, j − 1] is a complete segment of f , k ≥ j + 2d. Then the sequence f ′
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obtained from f by cutting off f [i, j − 1] is still a partial clique covering sequence of

G. Moreover,

|f ′{0, k − (j − i)}| = |f{0, k}| − |f{i, j − 1} − f{j, j + 2d}|.

Proof. It follows from the definition of f ′ that f ′[0, i + 2d] ≡ f [0, i + 2d], and

f ′[i, k − (j − i)] ≡ f [j, k]. Therefore for any 0 ≤ t ≤ k − (j − i), f ′[t, t + d] ≡

f [t+ j − i, t+ d+ j − i] which is a partial clique covering of G.

By Lemma 1, it remains to show that if f ′(x) = f ′(y) and x < y, then x ≥

y − d. Assume to the contrary that there exist x and y, x < y − d, such that

f ′(x) = f ′(y). Then x ≤ i − 1 and y ≥ i + 2d + 1, as f ′[0, i + 2d] ≡ f [0, i + 2d],

f ′[i, k− (j− i)] ≡ f [j, k] and f is a partial clique covering sequence. This implies that

f ′(x) = f(x) ∈ f{0, i−1}. Moreover, either f ′(y) = f(y+ j− i) ∈ f{j+2d+1, .}; or

f ′(y) = σ(f(y+ j − i)) = σ(f(j + t)) = f(i+ t) = f(x) where f(y+ j − i) = f(j + t)

for some 0 ≤ t ≤ 2d. In the former case, f ′(x) = f ′(y) ∈ f{0, i− 1}∩ f{j+2d+1, .},

contrary to Lemma 1, as f is a clique covering sequence. In the latter case, j + t is

adjacent to y + j − i, and x is adjacent to i + t, so j + t ≥ y + j − i− d ≥ j + d+ 1

and x ≥ i + t− d. Then we get a contradiction that t ≥ d+ 1 and t ≤ d. Hence, f ′

is a partial clique covering sequence of G.

Now we prove the second part. It follows from the definition that exactly those

colors in the set f{i, j+2d}−f{i, i+2d} which are used by f but not by f ′. Because

|f{i, i+2d}| = |f{j, j+2d}|, so |f{i, j+2d}− f{i, i+2d}| = |f{i, j+2d}− f{j, j+

2d}| = |f{i, j − 1} − f{j, j + 2d}|. Hence the moreover part follows. Q.E.D.

Corollary 3 Suppose f = (f(0), f(1), · · · , f(q+2d)) is a partial clique covering with

f [i, j − 1] a complete sequence, where i ≥ 0 and j ≤ q. Let f ′ be the partial clique

covering obtained from f by cutting off f [i, j − 1]. If ASf [i,j−1] ≤ Sf [0,q+2d], then

Sf ′[0,q+2d−(j−i)−1] ≥ Sf [0,q+2d]. Moreover, if f [0, 2d] ≡ f [q, q + 2d] and ASf [i,j−1] ≤

ASf [0,q−1], then ASf ′[0,q−(j−i)−1] ≥ ASf [0,q−1].
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Proof. By Lemma 2, |f ′{0, q+2d−(j−i)}| = |f{0, q+2d}|−|f{i, j−1}−f{j, j+2d}|.

Hence, we have

Sf ′[0,q+2d−(j−i)] =
q + 2d− (j − i) + 1

|f ′{0, q + 2d− (j − i)}|

=
q + 2d− (j − i) + 1

|f{0, q + 2d}| − |f{i, j − 1} − f{j, j + 2d}|

≥
q + 2d+ 1

|f{0, q + 2d}|

= Sf [0,q+2d].

The inequality above follows from the assumption that

Sf [0,q+2d] =
q + 2d+ 1

|f{0, q + 2d}|
≥

j − i

|f{i, j − 1} − f{j, j + 2d}|
= ASf [i,j−1],

and the fact that a/b ≥ c/d implies that (a+ c)/(b + d) ≤ a/b.

The moreover part can be proved similarly. We shall leave it to the reader.

Q.E.D.

Definition 5 Suppose g0 = (g(0), g(1), · · · , g(q + 2d)) is a partial clique covering

sequence of G, where q ≥ 1, and g0[0, 2d] ≡ g0[q, q+2d], i.e., g0[0, q−1] is a complete

segment of g0. Let g1, g2, · · · , be partial clique covering sequences of G isomorphic to

g0 such that gi+1[0, 2d] = gi[q, q+2d] and (gi{0, q+2d}−gi{0, 2d})∩gj{0, q+2d} = ∅

for all j < i. For any integer x, let x = ixq + ax, where 0 ≤ ax ≤ q − 1. Then the

sequence f defined by f(x) = gix(ax) is called a sequence obtained by tiling g.

Lemma 4 Suppose g = (g(0), g(1), · · · , g(q+2d)) is a partial clique covering sequence

of G, where q ≥ 1 and g[0, 2d] ≡ g[q, q + 2d]. If f is obtained by tiling g, then f is a

periodical clique covering sequence of G with period q. Moreover, Sf = ASg[0,q−1].

Proof. For any t ≥ 0, f [t, t + d] is a subsequence of gi[0, q + 2d] for some i. Hence

f [t, t+ d] is a partial clique covering sequence of G. By Lemma 1, it remains to show

that f(x) 6= f(y) when x < y − d. Assume to the contrary that there exist x, y such
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that f(x) = f(y) and x < y − d. Let x, y be such a pair that y − x is minimum. By

definition, f [x, y] is not a subsequence of gi[0, q+2d] for any i. Thus y > ixq+ q+2d,

x < iyq, ix < iy, and f(x) = gix(ax) = f(y) = giy(ay). By definition of gj, we know

that gix{0, q + 2d} ∩ giy{0, q + 2d} ⊂ gix{q, q + 2d} ∩ giy{0, 2d}. Therefore, there

exists some t, q ≤ t ≤ q + 2d, such that gix(t) = gix(ax). Since gix is a partial clique

covering sequence, t− ax ≤ d, hence t < q + d. Then f(ixq + t) = f(x) = f(y), and

y− (ixq+ t) > ixq+ q+2d− ixq− q−d = d. This contradicts the minimality of y−x.

It follows from the definition that |f{0, kq + 2d}| = k|g{0, q − 1} − g{q, q +

2d}| + |g{q, q + 2d}|. Therefore

Sf = lim
k→∞

kq + 2d+ 1

|f{0, kq + 2d}|

= lim
k→∞

kq + 2d+ 1

k|g{0, q − 1} − g{q, q + 2d}| + |g{q, q + 2d}|

=
q

|g{0, q − 1} − g{q, q + 2d}|

= ASg[0,q−1].

Q.E.D.

3 Periodical clique covering sequence with optimal

covering ratio

In this section, we prove the following result:

Theorem 5 Given D, there exists a periodical clique covering sequence f with Sf =

S(D).

Proof. Let ` = (2d+1)2d+2, and let Q be the set of all non-isomorphic partial clique

covering sequences g = (g(0), g(1), · · · , g(q+ 2d)) of G such that q ≤ ` and g[0, 2d] ≡

g[q, q+2d]. By Lemma 4, it suffices to prove that there exists a partial clique covering

sequence g = (g(0), g(1), · · · , g(q+ 2d)) in Q such that ASg[0,q−1] = S(D). Assume to
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the contrary that for any partial clique covering sequence g in Q, ASg[0,q−1] < S(D).

Since the set Q is finite, there exists an ε > 0 such that ASg[0,q−1] < S(D) − ε for

every g ∈ Q.

Claim. There exists a partial clique covering sequence g = (g(0), g(1), · · · , g(q+2d))

such that g[0, 2d] ≡ g[q, q + 2d] and ASg[0,q−1] > S(D) − ε.

Proof. By definition of S(D) there exists a clique covering sequence f of G and an

integer n′ for which Sf [0,n′−1] = n′

|f{0,n′−1}|
> S(D) − ε. Suppose |f{0, 2d}| = m. Let

c1, c2, · · · , cm be m new colors not in f{0, n′} and let φ : f{0, 2d} → {c1, c2, · · · , cm}

be a one-to-one onto mapping. Let g = (g(0), g(1), · · · , g(n′ + 2d)) be the sequence

defined as g(i) = f(i) for i ≤ n′ − 1 and g(i) = φ(f(i − n′)) for n′ ≤ i ≤ n′ + 2d.

It is straightforward to verify that g is a partial clique covering sequence of G and

g[0, 2d] ≡ g[n′, n′ + 2d]. Moreover, ASg[0,n′−1] = Sf [0,n′−1] > S(D) − ε. 2

Let g = (g(0), g(1), · · · , g(q + 2d)) be a partial clique covering sequence of G of

minimum length such that g[0, 2d] ≡ g[q, q + 2d] and ASg[0,q−1] > S(D) − ε. By the

choice of ε, we know that q > `.

It is obvious that each partial clique covering sequence of G with length 2d +

1 is isomorphic to a partial clique covering sequence with all entries in the set

{1, 2, · · · , 2d+1}. Hence there are at most (2d+1)2d+1 non-isomorphic partial clique

covering sequences of G of length 2d+ 1.

Consider the set {g[i, i + 2d] : i = 2d + 1, 2d + 2, · · · , q − 2d} of partial clique

covering sequences of G. Since there are q−4d ≥ `−4d > (2d+1)2d+1 such sequences,

we conclude that there exists i < j such that g[i, i+2d] ≡ g[j, j+2d]. Thus g[i, j−1]

is a complete segment of g. Let g′ be obtained from g by cutting off the complete

segment g[i, j−1]. It follows from Lemma 2 and Corollary 3 that g ′ is a partial clique

covering sequence of G and ASg′[0,q−(j−i)−1] ≥ ASg[0,q−1] > S(D) − ε, contrary to the

choice of g. Therefore, we conclude that there exists a partial clique covering sequence

g = (g(0), g(1), · · · , g(q + 2d)) with g[0, 2d] ≡ g[q, q + 2d] and q ≤ (2d + 1)2d+2 such
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that S(D) = ASg. Q.E.D.

Corollary 6 For any finite D-set, the asymptotic clique covering ratio S(D) is a

rational number.

Theorem 5 also shows that the limit lim
n→∞

n

χ(G(n,D))
exists, and hence S(D) =

lim
n→∞

n

χ(G(n,D))
.

4 Distance graphs with S(D) = ω(G(Z,D))

As observed in Section 1, we have S(D) ≤ ω(G(Z,D)) for all distance sets D. There

are distance sets D for which the strict inequality holds, S(D) < ω(G(Z,D)). For

example, if D = {2, 3, 5, 8}, then ω(G(Z,D)) = 4. The only type of K4 is of the

form {i, i + 3, i + 5, i + 8}. It is easy to see that the vertex set of G(Z,D) can not

be partitioned into this only type of K4’s. Therefore S(D) < 4. Indeed, for any

two distinct odd integers x, y, if D = {x, y, y − x, y + x}, then ω(G(Z,D)) = 4 and

S(D) < 4. In this section, we investigate the following question:

Question 1 For which D the equality S(D) = ω(G(Z,D)) holds ?

In other words, we consider for what distance graphs whose vertices can be

partitioned into cliques of maximum size ?

We first define the fractional chromatic number and the circular chromatic num-

ber of a graph which are needed in the discussion. The fractional chromatic number

χf(G) of a graph G is the minimum total weight that can be assigned to the inde-

pendent sets of G so that for each vertex x the total weight of those independent sets

containing x is at least 1. A (k, d)-coloring of a graph G is a function that assigns to

each vertex a color from the set {0, 1, · · · , k − 1} such that d ≤ |c(x) − c(y)| ≤ k − d

for every edge xy of G. The circular chromatic number χc(G) of G is the minimum

12



ratio k/d if G has a (k, d)-coloring. The following are known [33]:

ω(G) ≤ χf(G) ≤ χc(G) ≤ χ(G) and dχc(G)e = χ(G) (∗).

Now we relate Question 1 to a class of distance graphs which arose from the

study in T -colorings. A T -set has property (**) if the following is true:

spT(G) = spT(Kχ(G)), for all graphs G (∗∗)

The problem about which T -sets have property (**) was studied by several authors

[5, 27, 21, 22, 23]. Our next result shows that this problem is related to Question 1.

Theorem 7 If T has the property (**) and let D = T−{0}, then S(D) = ω(G(Z,D)) =

χf(G(Z,D)).

Proof. It was proved in [21] that T has the property (**) if and only

if χ(G(n,D)) = ω(G(n,D)) for all n, where D = T − {0}. It was proved in [3]

that χf (G(Z,D)) = lim
n→∞

n

ω(G(n,D))
. Therefore we have

S(D) = lim
n→∞

n

χ(G(n,D))

≤ ω(G(Z,D))

≤ χf(G(Z,D))

= lim
n→∞

n

ω(G(n,D))

= lim
n→∞

n

χ(G(n,D))

= S(D).

Therefore S(D) = ω(G(Z,D)) = χf (G(Z,D)). Q.E.D.

The converse of Theorem 7 is not always true. There are sets D such that

S(D) = ω(G(Z,D)) but spT(G) 6= spT(Kχ(G)) for some graph G, where T = D∪{0}.

As an example, let D = {a, a + 1, · · · , b}. We prove in the next result that for such
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distance sets D, S(D) = ω(G(Z,D)) always holds. However, it was proved in [22]

that if T = {0, a, a + 1, · · · , b}, then T has the property (**) if and only if b is a

multiple of a.

Theorem 8 If D = {a, a+ 1, · · · , b}, then S(D) = ω(G(Z,D)) = b b
a
c + 1.

Proof. It was proved in [2] that χc(G(Z,D)) = 1 + b
a
. Therefore ω(G(Z,D)) ≤

bχc(G(Z,D))c = b b
a
c + 1. As {0, a, 2a, · · · , b b

a
ca} induces a clique of G(Z,D), we

conclude that ω(G(Z,D) = b b
a
c + 1.

Let m = b b
a
c+ 1. To complete the proof, it suffices to show that the vertices of

G(ma,D) can be covered by a cliques. Define Ai = {i + ja : j = 0, 1, 2, · · · , m− 1},

i = 0, 1, 2, · · · , a− 1. Then each Ai is a clique and the = vertices of G(ma,D) is the

disjoint union of the Ai’s, 0 ≤ i ≤ a− 1. Q.E.D.

The coloring of distance graphs has been studied extensively [2, 3, 4, 6, 7, 10, 11,

12, 13, 19, 8, 9, 24, 25, 30, 29, 32, 34, 35]. It seems unlikely that some general coloring

method can find the chromatic number of all distance graphs. However, there is a

very simple general coloring method that works for many distance graphs: the regular

coloring method. This method was used to determine not only the chromatic number

but also the circular chromatic number of many distance graphs [2, 3, 6, 14, 20, 35].

The essence of the regular coloring method is revealed in the proof of Theorem 9

below, which was proved in [31]. In order to explain this coloring method, we include

a proof here.

For any real number x, let ||x|| denote the distance from x to the nearest integer.

Suppose D is a finite set of positive integers and r is a real number, let ||rD|| =

min{||rx|| : x ∈ D}. For a finite set D of positive integers, we define the function

κ(D) as

κ(D) = supr∈R||rD||.

14



Theorem 9 For a finite set D of positive integers,

χc(G(Z,D)) ≤
1

κ(D)
.

Proof. It is not difficult to see that when D is a finite set of positive integers, then

κ(D) is rational. Suppose κ(D) = || q
p
D|| = d

k
. Let r = p

qk
. We partition the real

line R into half open intervals Ii = [ir, (i+ 1)r). Then color the interval Ii with color

i (mod k). Intuitively, we make a “brush” of width r and paint the line R with

this brush and with k colors each used once in every k consecutive brushings. This

coloring of a distance graph is called a regular k-coloring with parameter r.

Now we show that the restriction of this coloring to Z is a (k, d)-coloring of

G(Z,D). By definition, the color c(i) of vertex i is given by the formula

c(i) = b
qki

p
c (mod k).

Then for any edge ij of G(Z,D), |i− j| ∈ D. Hence

|c(i) − c(j)| = |b
qki

p
c (mod k) − b

qkj

p
c (mod k)|

> b
qk|i− j|

p
c (mod k) − 1

≥ d− 1.

Therefore |c(i)−c(j)| ≥ d. Similarly we can prove that |c(i)−c(j)| ≤ k−d. Therefore

c is a (k, d)-coloring of G(Z,D) and hence χc(G(Z,D)) ≤ k/d. Q.E.D.

To determine the circular chromatic number of G(Z,D) by using the regular

coloring method, one usually proves that 1
κ(D)

is a lower bound for the fractional

chromatic number, i.e., χf(G(Z,D)) ≥ 1
κ(D)

. Combining this with (*), we obtain

χf(G(Z,D)) = χc(G(Z,D)) = 1
κ(D)

.

Our next result shows that S(D) = ω(G(Z,D)), if 1
κ(D)

is equal to the clique

number of G(Z,D).
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Theorem 10 If ω(G(Z,D)) = 1
κ(D)

, then S(D) = ω(G(Z,D)) = χf(G(Z,D)) =

χc(G(Z,D)) = χ(G(Z,D)) = 1
κ(D)

Proof. Assume ω(G(Z,D)) = 1
κ(D)

. It follows from (*) and Theorem 9 that

χf(G(Z,D)) = χc(G(Z,D)) = χ(G(Z,= D)) = 1
κ(D)

. We shall show that S(D) =

ω(G(Z,D)).

Let m = ω(G(Z,D)). Suppose κ(D) = || q

mp
D|| = 1

m
, where p, q are positive

integers. We choose p and q so that mp ≥ max{x : x ∈ D} (thus, mp and q are

not necessarily coprime). By the proof of Theorem 9, the mapping f defined by

f(i) = b qi

p
c (mod m) is an m-coloring of G(Z,D). Similarly, the mapping ψ defined

as

ψ(i) = qi (mod mp)

is an (mp, p)-coloring of G(Z,D).

Let Gmp(D) be the circulant graph with vertices 0, 1, · · · , mp − 1 and uv is an

edge in Gmp(D) if and only if |u − v| ∈ D or mp − |u − v| ∈ D. The restriction of

ψ to the vertices of Gmp(D) is an (mp, p)-coloring of Gmp(D). With an abuse of the

notation, we regard ψ as a homomorphism from Gmp(D) to Gp
mp, which has vertices

0, 1, · · · , mp− 1 and ij is an edge if and only if p ≤ |i− j| ≤ (m− 1)p.

Claim. Gmp(D) can be covered by p cliques of size m.

Proof. By our assumption, ω(G(Z,D)) = m. As G(Z,D) is vertex transitive and

by the choice of p, G(Z,D) has a clique Y0 = {y0, y1, y2, · · · , ym−1} such that 0 ≤

y0 < y1 < · · · < ym−1 ≤ mp − 1. By the definition of Gmp(D), Y0 is also a clique

of Gmp(D), hence ψ(Y0) is a clique of Gp
mp. It is easy to verify that every clique of

Gp
mp of size m is of the form {i, i+ p, i+ 2p, · · · , i + (m− 1)p} for some i. Therefore

without loss of generality we may assume that yj ∈ ψ−1(jp) for j = 0, 1, · · · , m− 1.

If gcd(mp, q) = 1, then |ψ−1(i)| = 1 for all i. Then Gmk(D) is covered by the p

maximum cliques: {ψ−1(i), ψ−1(i+ p) · · · , ψ−1(i+(m− 1)p)}, i = 0, 1, 2, · · · , p− 1. If

gcd(mp, q) = d, then |ψ−1(i)| = d if d|i; and |ψ−1(i)| = 0 otherwise. To complete the
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proof of the claim, it suffices to show that if d|j, then ψ−1(j) ∪ ψ−1(j + p) ∪ · · · ∪ =

ψ−1(j + (m− 1)p) is a disjoint union of d maximum cliques in Gmp(D).

It follows from the definition that ψ(i) = j if and only if ψ(i + mp

d
) = j, where

the summation is carried out modulo mp. Therefore ψ−1(x) = {x0, x0 + mp

d
, x0 +

2mp

d
, · · · , x0 + (d−1)mp

d
(mod mp

d
)}, where x0 is any vertex of ψ−1(x).

Now we can construct d disjoint cliques Yi in Gmp(D) by letting Yi = Y0 + imp

d

for 0 ≤ i ≤ d − 1, where the summation is carried out modulo mp. Similarly, by

shifting these cliques, one can show that ψ−1(j), ψ−1(j + p), · · · , ψ−1(j + (m − 1)p)

is a disjoint union of d maximum cliques in Gmp(D). The images of these cliques

under the homomorphism ψ cover all vertices of Gp
mp, and all these cliques cover all

vertices of Gmp(D). To be precise, the vertices of Gmp(D) are covered by p cliques

Yi,j = Y0 + imp

d
+ j for 0 ≤ i ≤ d − 1 and 0 ≤ j ≤ p/d − 1, where the additions are

carried out modulo mp. This completes the proof of the Claim. 2

Since Y0 is a clique in G(Z,D), Yi,j = Y0 +x (where the addition is the ordinary

addition, i.e., does not take modulo) are cliques of G. Therefore the vertices of

G(Z,D) are covered by the cliques Yi,j = Y0 + imp

d
+ j for i = · · · ,−2,−1, 0, 1, 2, · · ·

and 0 ≤ j ≤ p/d− 1. Q.E.D.

There are many D-sets for which ω(G(Z,= D)) = 1
κ(D)

, such as D = {a, a +

1, · · · , ka}, and D = {a, b, a + b}, gcd(a, b) = 1 and a ≡ b (mod 3) [2, 31], etc.

There are also many distance sets D for which the answer to Question 1 is positive,

but ω(G(Z,D)) 6= 1
κ(D)

. The class of distance graphs we consider below provides such

examples.

Given positive integers m, k and s with m > ks, let Dm,k,s = {0, 1, 2, · · · , m} −

{k, 2k, 3k, · · · , sk}. The distance graphs with D-sets D = Dm,k,s have been studied

by several authors [10, 19, 24, 3, 25, 7, 18, 34]. Erdős, Eggleton and Skelton initiated

the study of this family of distance graphs for the case that s = 1 = [10]. Chang, Liu

and Zhu [3] gave the fractional chromatic number of G(Z,Dm,k,1), and completely
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determined the value of χ(G(Z,Dm,k,1)) for any m and k.

The distance graphs with distance sets D = Dm,k,s for other values of s were

first studied by Liu and Zhu [25] in which the authors showed the results of fractional

chromatic number: χf (G(Z,Dm,k,s)) = k if m < (s + 1)k; and χf (G(Z,Dm,k,s) =

(m + sk + 1)/(s + 1) if m ≥ (s + 1)k, and determined χ(G(Z,Dm,k,s)) for the cases

s = 2, 3 and some others. The exact values of χ(G(Z,Dm,k,s)) for all m, k, and s

were completely solved by Huang and Chang [18]. The circular chromatic number of

G(Z,Dm,k,s) was investigated in [3, 18, 34], and the complete solution was recently

obtained by Zhu [34].

Suppose D = Dm,k,s. Let m′ = m+sk+1 and let d = gcd(m′, k) = gcd(m+1, k).

The following result was proved in [34]:

Theorem 11

χc(G) =







m′/(s+ 1), if d = 1 or d(s+ 1) | m′,

(m′ + 1)/(s+ 1), otherwise.

A consequence of this result is that for some distance sets D = Dm,k,s (i.e.,

those Dm,k,s for which d 6= 1 and d(s+ 1) 6| m′), χf(G) 6= χc(G). Therefore for these

distance graphs, χ(G) 6= ω(G). However, our next result shows that for all distance

sets D = Dm,k,s, S(D) = ω(G(Z,D)).

Theorem 12 Suppose D = Dm,k,s = {0, 1, 2, · · · , m}−{k, 2k, 3k, · · · , sk} where m =

(s+ 1)kq + r for some nonnegative integers q and r with 0 ≤ r ≤ (s+ 1)k− 1. Then

S(D) = ω(G(Z,D)) =

{

qk + r + 1, if 0 ≤ r ≤ k − 1;
(q + 1)k, if k ≤ r ≤ (s+ 1)k − 1.

Proof. We first prove the second equality. By definition of D = Dm,k,s, it is easy to

verify that the maximum size of a clique in any set of consecutive (s+ 1)k vertices in

G(Z,D) is k, i.e. ω(G((s + 1)k,D)) = k. Therefore, to show the second equality it

suffices to find cliques in G(Z,D) with the desired cardinalities. If 0 ≤ r ≤ k− 1, the

set of vertices (∪q−1
i=0 {i(s+1)k, i(s+1)k+1, · · · , i(s+1)k+k− 1})∪{q(s+1)k, q(s+
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1)k+1, · · · , q(s+1)k+ r} forms a clique in G; if k ≤ r ≤ (s+1)k− 1, then the set of

vertices ∪q
i=0{i(s+ 1)k, i(s+ 1)k+ 1, · · · ,= i(s+ 1)k+ k− 1} is a clique in G. These

prove the second equality.

Now we show the first equality. Suppose k ≤ r ≤ (s+1)k−1, it suffices to prove

that the vertices of G((q + 1)(s+ 1)k,D) can be covered by (s+ 1) cliques. For j =

0, 1, 2, · · · , s, let Aj = ∪q
i=0{i(s+1)k+jk, i(s+1)k+jk+1, · · · ,= i(s+1)k+jk+k−1}.

It is easy to see that each Aj is a clique and the vertices of G((q + 1)(s + 1)k,D) is

the disjoint union of the Aj’s, j = 0, 1, · · · , s.

If 0 ≤ r ≤ k−1, it suffices to prove that the vertices of G((s+1)(qk+r+1), D)

can be covered by (s + 1) cliques. Consider the case q = 1. We partition the set

of vertices {0, 1, · · · , (s + 1)(k + r + 1) − 1} into (3s + 3) blocks (i.e. intervals of

consecutive vertices) by the following three steps:

(1) each of the first (s+ 1) blocks, A0, A1, A2, · · ·, As, has length r + 1;

(2) each of the next (s+ 1) blocks, B0, B1, B2, · · ·, Bs, has length k − r − 1;

(3) each of the last (s+ 1) blocks, C0, C1, C2, · · ·, Cs, has length r + 1.

Let Wi = Ai ∪Bs−i ∪ Ci for i = 0, 1, 2, · · · , s.

Then each Wi is a clique in G. (For instance, W0 = A0 ∪ Bs ∪ C0, where

A0 = {0, 1, · · · , r}, Bs = {(s+ 1)(r+ 1) + s(k− r− 1), (s+ 1)(r+ 1) + s(k− r− 1) +

1, · · · , (s+ 1)k− 1}, and C0 = {(s+ 1)k, (s+ 1)k+ 1, · · · , (s+ 1)k+ r}.) This implies

that the vertices of G((s+ 1)(k + r + 1), D) can be covered by s+ 1 cliques.

For the case that q ≥ 2, one can extend the method above by first repeating (1)

and (2) together for q times and then adjoining (3). To be precise, we partition the

vertices of G((s+ 1)(qk + r + 1), D) into blocks Ai,j, Bi,j and Ci (i, j = 0, 1, 2 · · · , s)
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in the following order:

A0,0 → A0,1 → · · · → A0,s

→ B0,0 → B0,1 → · · · → B0,s

→ A1,0 → A1,1 → · · · → A1,s

→ B1,0 → B1,1 → · · · → B1,s

· · ·
→ As,0 → As,1 → · · · → As,s

→ Bs,0 → Bs,1 → · · · → Bs,s

→ C0 → C1 → · · · → Cs

where each A or C block has (r+1) vertices and each B block has (k−r−1) vertices.

For 0 ≤ i ≤ s, let Wi = ∪s
j=0(Ai,j ∪ Bi,s−j) ∪ Ci. Then each Wi is a clique in G and

the vertices of G((s+ 1)(qk + r + 1), D) are covered by Wi, 0 ≤ i ≤ s. Q.E.D.
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