Antipodal Labelings for Cycles

Justie Su-Tzu Juan* and Daphne Der-Fen Liu ${ }^{\dagger}$

Submitted: December 2006; revised: August 2007

Abstract

Let G be a graph with diameter d. An antipodal labeling of G is a function f that assigns to each vertex a non-negative integer (label) such that for any two vertices u and $v,|f(u)-f(v)| \geq d-d(u, v)$, where $d(u, v)$ is the distance between u and v. The span of an antipodal labeling f is $\max \{f(u)-f(v): u, v \in V(G)\}$. The antipodal number for G, denoted by an (G), is the minimum span of an antipodal labeling for G. Let C_{n} denote the cycle on n vertices. Chartrand et al. [4] determined the value of $\operatorname{an}\left(C_{n}\right)$ for $n \equiv 2(\bmod 4)$. In this article we obtain the value of $\operatorname{an}\left(C_{n}\right)$ for $n \equiv 1(\bmod 4)$, confirming a conjecture in [4]. Moreover, we settle the case $n \equiv 3$ $(\bmod 4)$, and improve the known lower bound and give an upper bound for the case $n \equiv 0(\bmod 4)$.

[^0]
1 Introduction

Radio k-labeling was motivated by the frequency assignment problem (cf. [7]). Let k be a positive integer. A radio k-labeling (or k-labeling for short) for a graph G is a function, $f: V(G) \rightarrow$ $\{0,1,2, \cdots\}$, such that the following is satisfied for any vertices u and v :

$$
|f(u)-f(v)| \geq k+1-d(u, v)
$$

where $d(u, v)$ denotes the distance between u and v. The span of such a function f, denoted by $\operatorname{sp}(f)$, is defined as $\operatorname{sp}(f)=$ $\max \{f(u)-f(v): u, v \in V(G)\}$. The minimum span over all k-labelings of a graph G is called the Φ_{k}-number and denoted by $\Phi_{k}(G)$.

For the special case that $k=1$, the 1 -labeling is indeed the conventional vertex coloring and we have $\Phi_{1}(G)=\chi(G)-1$, where $\chi(G)$ is the chromatic number of G. Another special case is when $k=2$, the 2-labeling is the same as the distance two labeling (or $L(2,1)$-labeling) which has been studied extensively in the past years (cf. [1, 2, 3, 9, 10, 11, 12, 14]). The Φ_{2}-number is known as the λ-number of G.

The radio k-labeling for large values of k has also been investigated by several authors. Let G be a connected graph. The maximum distance among all pairs of vertices in G is the diameter of G, denoted by diam (G). The radio labeling (or multi-level distance labeling) is a radio k-labeling when $k=\operatorname{diam}(G)$. The $\Phi_{\text {diam }(G) \text {-number of } G}$ is called the radio number of G, denoted by $\operatorname{rn}(G)$. The radio number for different families of graphs has been investigated in $[6,8,15,16,17,18,19]$. For instance, the radio number for paths and cycles has been studied in $[6,8,19]$ and was recently settled in [18].

When $k=\operatorname{diam}(G)-1$, a k-labeling is called an antipodal labeling. That is, an antipodal labeling (or radio antipodal coloring) for G is a function, $f: V(G) \rightarrow\{0,1,2, \cdots\}$, such that the following is satisfied for any two vertices u and v :

$$
|f(u)-f(v)| \geq \operatorname{diam}(G)-d(u, v)
$$

The antipodal number for G, denoted by $\operatorname{an}(G)$, is the minimum span of an antipodal labeling admitted by G. Notice that a radio labeling is a one-to-one function, while in an antipodal labeling, two vertices of distance $\operatorname{diam}(G)$ apart may receive the same label (this is where the name "antipodal" came from).

The antipodal labeling for graphs was first studied by Chartrand et al. [4, 5], in which, among other results, general bounds of $\operatorname{an}(G)$ were obtained. Khennoufa and Togni [13] determined the exact value of $\operatorname{an}\left(P_{n}\right)$ for paths P_{n}. The antipodal labeling for cycles C_{n} was studied in [4], in which lower bounds for an $\left(C_{n}\right)$ were shown. In addition, the bound for the case $n \equiv 2(\bmod 4)$ was proved to be the exact value of $\operatorname{an}\left(C_{n}\right)$, and the bound for the case $n \equiv 1(\bmod 4)$ was conjectured to be the exact value as well [4].

In this article, we confirm the conjecture mentioned above. Moreover, we determine the value of an $\left(C_{n}\right)$ for the case $n \equiv 3$ $(\bmod 4)$. For the case $n \equiv 0(\bmod 4)$, we improve the known lower bound [4] and give an upper bound. It is conjectured that the upper bound is the exact value.

2 Lower Bounds

In this section, we establish lower bounds for an $\left(C_{n}\right)$. These bounds were proved by Chartrand et al [4]. We present here a different proof which includes techniques that will be used in later sections.

In an antipodal labeling, the number assigned to a vertex is called a label. Notice that as we are seeking for the minimum span of an antipodal labeling, without loss of generality we assume that the label 0 is used by any antipodal labeling. Consequently, the span of f is the maximum label used.

In the following we introduce notations to be used throughout this article. Denote $V\left(C_{n}\right)=\left\{v_{0}, v_{1}, \cdots, v_{n-1}\right\}, v_{i} v_{i+1} \in$ $E\left(C_{n}\right)$ for $0 \leq i \leq n-2$, and $v_{n-1} v_{0} \in E\left(C_{n}\right)$. The diameter of C_{n} is denoted by d, where $d=\lfloor n / 2\rfloor$. Every antipodal labeling f for C_{n} gives an ordering (which may not be unique) of the vertices according to the labels assigned . Denote the ordering by $\left(x_{0}, x_{1}, \cdots, x_{n-1}\right)$, where $\left\{x_{0}, x_{1}, \cdots, x_{n-1}\right\}=V\left(C_{n}\right)$ and

$$
0=f\left(x_{0}\right) \leq f\left(x_{1}\right) \leq f\left(x_{2}\right) \leq \cdots \leq f\left(x_{n-1}\right)
$$

Note, the span of f is $f\left(x_{n-1}\right)$.
For $i=0,1, \cdots, n-2$, we define the distance gap and label $g a p$, respectively, by:

$$
d_{i}=d\left(x_{i}, x_{i+1}\right), \quad f_{i}=f\left(x_{i+1}\right)-f\left(x_{i}\right) .
$$

By definition, it holds that $f_{i} \geq d-d_{i}$.
Proposition 1 For any three vertices u, v and w on a cycle C_{n},

$$
d(u, v)+d(v, w)+d(u, w) \leq n
$$

Proof. Without loss of generality, assume $d(u, v), d(v, w) \leq$ $d(u, w)$. If all the three vertices lie on one half of the cycle, then $d(u, v)+d(v, w)+d(u, w)=2 d(u, w) \leq n$. Otherwise, we have $d(u, v)+d(v, w)+d(u, w)=n$.

Lemma 2 Let f be an antipodal labeling for $C_{n}, n \geq 3$, with labels $f\left(x_{0}\right) \leq f\left(x_{1}\right) \leq \cdots \leq f\left(x_{n-1}\right)$. Let $n=4 k+r$ for some $0 \leq r \leq 3$. Then for any $0 \leq i \leq n-3$,

$$
f\left(x_{i+2}\right)-f\left(x_{i}\right)=f_{i}+f_{i+1} \geq \begin{cases}k, & \text { if } r=0,1,3 \\ k+1, & \text { if } r=2\end{cases}
$$

Proof. By definition, we have $f\left(x_{i+1}\right)-f\left(x_{i}\right) \geq d-d\left(x_{i+1}, x_{i}\right)$, $f\left(x_{i+2}\right)-f\left(x_{i+1}\right) \geq d-d\left(x_{i+2}, x_{i+1}\right)$, and $f\left(x_{i+2}\right)-f\left(x_{i}\right) \geq$ $d-d\left(x_{i+2}, x_{i}\right)$. Summing up these three in-equalities and by Proposition 1, we get

$$
\begin{aligned}
2\left(f\left(x_{i+2}\right)-f\left(x_{i}\right)\right) & \geq 3 d-\left(d\left(x_{i}, x_{i+1}\right)+d\left(x_{i+1}, x_{i+2}\right)\right. \\
& \geq 3 d-n .
\end{aligned}
$$

Therefore, $f_{i}+f_{i+1}=f\left(x_{i+2}\right)-f\left(x_{i}\right) \geq\lceil(3 d-n) / 2\rceil$. The results then follow by immediate calculations for different values of n.

Corollary 3 [4] Let $n=4 k+r$ for some $n \geq 3$ and $0 \leq r \leq 3$. Then

$$
\operatorname{an}\left(C_{n}\right) \geq \begin{cases}k(2 k-1), & \text { if } r=0 \\ 2 k^{2}, & \text { if } r=1 ; \\ 2 k(k+1), & \text { if } r=2 ; \\ k(2 k+1), & \text { if } r=3\end{cases}
$$

Proof. Let f be an antipodal labeling for C_{n}. The span of f is

$$
f\left(x_{n-1}\right)=f_{0}+f_{1}+\cdots+f_{n-2} .
$$

By Lemma 2, the results follow by pairing up the terms in the above summation and leaving the last term f_{n-2} (if n is even) which is at least 0 .

In [4], it was proved that the equality in Corollary 3 holds for the case $n \equiv 2(\bmod 4)$, and conjectured that the equality also holds for the case $n \equiv 1(\bmod 4)$. This conjecture is confirmed in the next section.

$3 n=4 k+1$

Let f be an antipodal labeling for a cycle C_{n} with $0=f\left(x_{0}\right) \leq$ $f\left(x_{1}\right) \leq \cdots \leq f\left(x_{n-1}\right)$. In the rest of this article, we denote the permutation π on $\{0,1,2, \cdots, n-1\}$ generated from f with

$$
x_{i}=v_{\pi(i)} .
$$

For an integer x and a positive integer y, we denote " $x \bmod y$ " as a binary operation which outputs an integer z with $z \equiv x$ $(\bmod y)$ and $0 \leq z \leq y-1$.

In this section, we prove the following result:
Theorem 4 If $n=4 k+1$ for some integer $k \geq 1$, then

$$
\operatorname{an}\left(C_{n}\right)=2 k^{2}
$$

Proof. By Corollary 3, it suffices to find an antipodal labeling with span $2 k^{2}$. Two cases are considered. Recall $d=$ $\operatorname{diam}\left(C_{4 k+1}\right)=2 k$.
Case 1. k is odd First, we label the $2 k+1$ vertices x_{0}, x_{2}, $\cdots, x_{4 k}$ by

$$
\pi(2 i)=k i \bmod n, \text { and } f\left(x_{2 i}\right)=k i, \text { for } i=0,1,2, \cdots, 2 k .
$$

For instance, $\pi(2)=k$ (i.e., $x_{2}=v_{k}$) and $f\left(x_{2}\right)=k$; and $\pi(4 k)=2 k-\frac{k-1}{2}$ and $f\left(x_{4 k}\right)=2 k^{2}$.

Secondly, we label the remaining vertices $x_{1}, x_{3}, \cdots, x_{4 k-1}$ by $\pi(1)=\pi(4 k)+k=3 k-\frac{k-1}{2}$; and $\pi(2 i+1)=(\pi(2 i-1)+k)$
$\bmod n$, for $i=1,2, \cdots, 2 k-1$, with labels $f\left(x_{2 i+1}\right)=(k-$ 1) $/ 2+k i$ for $i=0,1, \cdots, 2 k-1$. See Figure 1 for an example. In Figure 1 (and all other figures), the number inside the circle for each vertex is the label assigned to that vertex.

Figure 1: An antipodal labeling for C_{13} with minimum span $\operatorname{an}\left(C_{13}\right)=18$.

To see that π is a permutation of $\{0,1, \cdots, n-1\}$, we observe that $\pi(0), \pi(2), \cdots, \pi(4 k), \pi(1), \pi(3), \cdots, \pi(4 k-1)$ is a list of vertices winding around C_{n} by jumping k vertices between any two consecutive terms. Since $\operatorname{gcd}(n, k)=1$, so π is a permutation of $\{0,1, \cdots, n-1\}$. In addition, one can easily check that for every i the following hold:

$$
\begin{gathered}
f\left(x_{i+1}\right)-f\left(x_{i}\right) \geq d-d\left(x_{i+1}, x_{i}\right) \\
f\left(x_{i+2}\right)-f\left(x_{i}\right)=k=2 k-k=d-d\left(x_{i+2}, x_{i}\right) \\
f\left(x_{i+s}\right)-f\left(x_{i}\right) \geq 2 k \geq d-d\left(x_{i+s}, x_{i}\right), \text { for } s \geq 4
\end{gathered}
$$

Hence, to show that f is an antipodal labeling, it suffices to verify $f\left(x_{i+3}\right)-f\left(x_{i}\right) \geq 2 k-d\left(x_{i+3}, x_{i}\right)$. This is true since $d\left(x_{i+3}, x_{i}\right)=(k+1) / 2$, and $f\left(x_{i+3}\right)-f\left(x_{i}\right) \in\{(3 k-1) / 2,(3 k+$ 1) $/ 2\}$.

Case 2. k is even Similar to Case 1, we first label the $2 k+1$ vertices $x_{0}, x_{2}, \cdots, x_{4 k}$, by $\pi(2 i)=k i \bmod n$, for $i=0,1, \cdots, 2 k$,
using labels $f\left(x_{2 i}\right)=k i$. Note that since $2 k^{2} \equiv n-\frac{k}{2}(\bmod n)$, we have $x_{4 k}=v_{n-(k / 2)}$.

Secondly, we label the remaining vertices by $\pi(1)=2 k+1$, $f\left(x_{1}\right)=0$, and

$$
\pi(2 i+1)= \begin{cases}(\pi(2 i-1)+k) & \bmod n, \\ \text { if } i \text { is odd } \\ (\pi(2 i-1)+k+1) & \bmod n, \\ \text { if } i \text { is even }\end{cases}
$$

with labels

$$
f\left(x_{2 i+1}\right)= \begin{cases}f\left(x_{2 i-1}\right)+k, & \text { if } i \text { is odd; } \\ f\left(x_{2 i-1}\right)+k+1, & \text { if } i \text { is even. }\end{cases}
$$

See Figure 2 for an example.

Figure 2: An antipodal labeling for C_{9} with minimum span $\operatorname{an}\left(C_{9}\right)=8$.

By calculation, $\pi(1)=2 k+1 \equiv-2 k(\bmod n)$, and for $1 \leq i \leq 2 k-1$,

$$
\pi(2 i+1) \equiv \begin{cases}-i k & (\bmod n), \\ -(i+2) k & (\bmod i \text { is odd } \\ - & \text { if } i \text { is even }\end{cases}
$$

Since $\pi(2 i)=k i \bmod n$, for $0 \leq i \leq 2 k$, we conclude

$$
\{\pi(i): 0 \leq i \leq 4 k\}=\{j k \bmod n:-2 k \leq j \leq 2 k\} .
$$

Since $\operatorname{gcd}(n, k)=1, \pi$ is a permutation. Similar to Case 1 , it is straightforward to check that f is an antipodal labeling, and we shall leave the details to the reader.

$4 \quad n=4 k+3$

As it turned out (Theorem 5), the exact value of an $\left(C_{4 k+3}\right)$ is greater than the lower bound established in Corollary 3.

Theorem 5 For every integer $k \geq 0$, an $\left(C_{4 k+3}\right)=2 k^{2}+2 k$.
Note, when $k=0$ in Theorem 5, it is trivial that an $\left(C_{3}\right)=$ 0 . The following lemma will be used to prove Theorem 5 for $k \geq 1$.

Lemma 6 Let f be an antipodal labeling for C_{n} where $n=4 k+$ $3, k \geq 1$. If $f_{i}+f_{i+1}=k$ for some $0 \leq i \leq n-3$, then the following hold:
(1) $d\left(x_{i}, x_{i+2}\right)=k+1$,
(2) $f_{i}=t, d_{i+1}=k+t+1$, and $d_{i}=2 k-t+1$, for some $t \in\{0,1, \cdots, k\}$.

Proof. Recall $d=\operatorname{diam}\left(C_{4 k+3}\right)=2 k+1$. Assume $f_{i}+f_{i+1}=k$ for some i. By definition,

$$
\begin{aligned}
d\left(x_{i}, x_{i+2}\right) \geq d-\left(f\left(x_{i+2}\right)-f\left(x_{i}\right)\right) & =d-\left(f_{i+1}+f_{i}\right) \\
& =(2 k+1)-k=k+1 .
\end{aligned}
$$

On the other hand, by Proposition 1 and definition, we have

$$
\begin{aligned}
d\left(x_{i}, x_{i+2}\right) & \leq(4 k+3)-\left(d_{i}+d_{i+1}\right) \\
& \leq(4 k+3)-\left(d-f_{i}+d-f_{i+1}\right) \\
& =(4 k+3)-(4 k+2-k) \\
& =k+1 .
\end{aligned}
$$

This verifies (1).
Let $f_{i}=t$ for some $t \in\{0,1, \cdots, k\}$. By (1), the second equality in the above holds, which implies that $d_{i}=d-f_{i}$ and $d_{i+1}=d-f_{i+1}$. Therefore, (2) follows as $d=2 k+1$.

Lemma 7 Let f be an antipodal labeling for C_{n} where $n=4 k+3$ for some integer $k \geq 1$. Then for any $0 \leq i \leq n-5$,

$$
f_{i}+f_{i+1}+f_{i+2}+f_{i+3} \geq 2 k+1
$$

Proof. Assume to the contrary that for some $i, f_{i}+f_{i+1}+$ $f_{i+2}+f_{i+3} \leq 2 k$. By Lemma 2, $f_{i}+f_{i+1}=f_{i+2}+f_{i+3}=k$. By symmetry and by Lemma 6 (1), without loss of generality, assume $x_{i}=v_{0}, x_{i+2}=v_{k+1}$ and $x_{i+4}=v_{2(k+1)}$. By Lemma 6 (2), $f_{i}=t$ for some $0 \leq t \leq k$ and $d_{i}=2 k-t+1$. Note, $x_{i+1} \neq$ $v_{2 k-t+1}$, for otherwise it would be $d_{i+1}=d\left(x_{i+1}, x_{i+2}\right)=k-t$, a contradiction. Hence, we conclude $x_{i+1}=v_{n-(2 k-t+1)}=v_{2 k+t+2}$. This implies $d\left(x_{i+4}, x_{i}\right)=t$. Because f is an antipodal labeling, we have

$$
\begin{aligned}
2 k-t=f_{i+1}+f_{i+2}+f_{i+3} & =f\left(x_{i+4}\right)-f\left(x_{i+1}\right) \\
& \geq 2 k+1-d\left(x_{i+4}, x_{i+1}\right) \\
& =2 k+1-t
\end{aligned}
$$

a contradiction.
Theorem 8 For every integer $k \geq 1$, an $\left(C_{4 k+3}\right) \geq 2 k^{2}+2 k$.
Proof. By Lemmas 2 and 7 , the span of an antipodal labeling f for $C_{4 k+3}$ has

$$
\begin{aligned}
& f_{0}+f_{1}+\cdots+f_{4 k+1} \\
= & \sum_{i=0}^{k-1}\left(f_{4 i}+f_{4 i+1}+f_{4 i+2}+f_{4 i+3}\right)+f_{4 k}+f_{4 k+1} \\
\geq & k(2 k+1)+k=2 k^{2}+2 k .
\end{aligned}
$$

Proof of Theorem 5. For $k=0, \mathrm{an}\left(C_{3}\right)=0$ is trivial as mentioned earlier. For $k \geq 1$, it remains to find an antipodal labeling for $C_{4 k+3}$ with span equal to the desired number. First, we label the vertices $x_{0}, x_{2}, \cdots, x_{4 k+2}$, by $\pi(0)=0$ and $f\left(x_{0}\right)=$ 0 ; and for $1 \leq i \leq 2 k+1$,

$$
\begin{gathered}
\pi(2 i)= \begin{cases}(\pi(2 i-2)+k+1) & \bmod n, \\
\text { if } i \text { is odd } \\
(\pi(2 i-2)+k) & \bmod n, \\
\text { if } i \text { is even, }\end{cases} \\
f\left(x_{2 i}\right)= \begin{cases}f\left(x_{2 i-2}\right)+k, & \text { if } i \text { is odd } \\
f\left(x_{2 i-2}\right)+k+1, & \text { if } i \text { is even }\end{cases}
\end{gathered}
$$

Secondly, we label the remaining vertices by $\pi(1)=2 k+2$ and $f\left(x_{1}\right)=0$; and for $1 \leq i \leq 2 k$,
$\pi(2 i+1)=(\pi(2 i-1)+k+1) \bmod n$, and $f\left(x_{2 i+1}\right)=i(k+1)$.

Figure 3: An antipodal labeling for C_{11} with minimum span $\operatorname{an}\left(C_{11}\right)=12$.

See Figure 3 for an example.
By some calculation, one gets

$$
\begin{gathered}
\pi(2 i+1) \equiv(i+2)(k+1)(\bmod n), \text { for } 0 \leq i \leq 2 k, \text { and } \\
\pi(2 i) \equiv \begin{cases}-(i-2)(k+1) & (\bmod n), \\
-i(k+1) & (\bmod i \text { is odd } n), \\
\text { if } i \text { is even, }\end{cases}
\end{gathered}
$$

for $0 \leq i \leq 2 k+1$. Hence, we conclude
$\{\pi(i): 0 \leq i \leq 4 k+2\}=\{j(k+1) \bmod n:-2 k \leq j \leq 2 k+2\}$.
Because $\operatorname{gcd}(n, k+1)=1, \pi$ is a permutation. Similar to the proof of Theorem 4, it is straightforward to show that f is an antipodal labeling, and we shall leave the details to the reader. This completes the proof of Theorem 5.

$5 \quad n=4 k$

Note, it is trivial that an $\left(C_{4}\right)=1$. For cycles with $n=4 k$ nodes, $k \geq 2$, we improve the lower bound in Corollary 3 and give an upper bound.

Theorem 9 For every integer $k \geq 2$,

$$
2 k^{2}-\lfloor k / 2\rfloor \leq \operatorname{an}\left(C_{4 k}\right) \leq 2 k^{2}-1 .
$$

The following lemma will be used to prove the lower bound for $\operatorname{an}\left(C_{4 k}\right)$ in Theorem 9. Recall that $d=\operatorname{diam}\left(C_{4 k}\right)=2 k$.

Lemma 10 Let f be an antipodal labeling of $C_{4 k}$, for some integer $k \geq 2$. If $f_{i}+f_{i+1}=k$ for some $0 \leq i \leq n-3$, then $d\left(x_{i}, x_{i+2}\right)=k$.

Proof. Assume $f_{i}+f_{i+1}=k$ for some $0 \leq i \leq n-3$. Then $d\left(x_{i}, x_{i+2}\right) \geq d-\left(f_{i}+f_{i+1}\right)=k$. On the other hand, by Proposition 1 and definition,

$$
\begin{aligned}
d\left(x_{i}, x_{i+2}\right) & \leq n-\left(d_{i}+d_{i+1}\right) \\
& \leq 4 k-\left(d-f_{i}+d-f_{i+1}\right) \\
& =k
\end{aligned}
$$

Lemma 11 Let f be an antipodal labeling of $C_{4 k}, k \geq 2$. Then for any $0 \leq i \leq n-9$,

$$
\sum_{j=0}^{7} f_{i+j} \geq 4 k+1
$$

Proof. Assume to the contrary, for some $0 \leq i \leq n-9$, we have $\sum_{j=0}^{7} f_{i+j} \leq 4 k$. By Lemma $2, f_{i}+f_{i+1}=f_{i+2}+f_{i+3}=$ $f_{i+4}+f_{i+5}=f_{i+6}+f_{i+7}=k$. By Lemma 10, $d\left(x_{i}, x_{i+2}\right)=$ $d\left(x_{i+2}, x_{i+4}\right)=d\left(x_{i+4}, x_{i+6}\right)=d\left(x_{i+6}, x_{i+8}\right)=k$. Since $n=4 k$, it is impossible that all these four equations hold. So the result follows.

Lemma 12 Let f be an antipodal labeling of $C_{4 k}, k \geq 2$. The following are true.
(1) If $f_{i}+f_{i+1}=k$ for some $0 \leq i \leq n-4$, then $f_{i+2} \geq f_{i}$.
(2) If $f_{i}+f_{i+1}=k$ for some $1 \leq i \leq n-3$, then $f_{i-1} \geq f_{i+1}$.
(3) If $f_{i}+f_{i+1}+f_{i+2}+f_{i+3}=2 k$ for some $0 \leq i \leq n-6$, then $f_{i+4} \geq f_{i} \geq 1$.
(4) If $\sum_{j=0}^{7} f_{i+j}=4 k+1$ for some $0 \leq i \leq n-10$, then $f_{i+8} \geq f_{i}$.
(5) If $\sum_{j=0}^{7} f_{i+j}=4 k+1$ for some $0 \leq i \leq n-10$, then $f_{i+8} \geq 1$.
(6) For any $0 \leq i \leq n-6, \sum_{j=0}^{4} f_{i+j} \geq 2 k+1$.
(7) For any $0 \leq i \leq n-10, \sum_{j=0}^{8} f_{i+j} \geq 4 k+2$.

Proof. To prove (1), assume $f_{i}+f_{i+1}=k$ for some $0 \leq i \leq n-4$. By Lemma 2, $f_{i+2}+f_{i+1} \geq k=f_{i+1}+f_{i}$, hence $f_{i+2} \geq f_{i}$. (2) follows by a similar argument.

To prove (3), assume $f_{i}+f_{i+1}+f_{i+2}+f_{i+3}=2 k$ for some $0 \leq i \leq n-6$. Then by Lemma $2, f_{i}+f_{i+1}=f_{i+2}+f_{i+3}=k$. By Lemma 10, $d\left(x_{i}, x_{i+2}\right)=d\left(x_{i+2}, x_{i+4}\right)=k$, so $d\left(x_{i}, x_{i+4}\right)=2 k$. This implies that $d_{i}<2 k$, as $n=4 k$. By definition of antipodal labeling, $f_{i} \geq 1$. Hence, by (1), we have $f_{i+4} \geq f_{i+2} \geq f_{i} \geq 1$.

To prove (4), assume $\sum_{j=0}^{7} f_{i+j}=4 k+1$ for some $0 \leq i \leq$ $n-10$. By Lemma 11, $\sum_{j=1}^{8} f_{i+j} \geq 4 k+1=\sum_{j=0}^{7} f_{i+j}$, hence $f_{i+8} \geq f_{i}$.

To prove (5), assume $\sum_{j=0}^{7} f_{i+j}=4 k+1$ for some $0 \leq i \leq$ $n-10$. By Lemma 2, we have $f_{i}+f_{i+1}=f_{i+2}+f_{i+3}=k$ or $f_{i+4}+f_{i+5}=f_{i+6}+f_{i+7}=k$. For the former case, the result follows by (4) and (3); for the latter case, the results follows by (3).
(6) follows by (3) and Lemma 2; and (7) follows by (5) and Lemma 11.

Corollary 13 For any integer $k \geq 2$, an $\left(C_{4 k}\right) \geq 2 k^{2}-\lfloor k / 2\rfloor$.

Proof. For $k=2$, by Lemma 2 and Lemma 12 (6), the span of an antipodal labeling f for C_{8} has $f\left(x_{7}\right)=\left(f_{0}+f_{1}+\cdots+f_{4}\right)+$ $\left(f_{5}+f_{6}\right) \geq 5+2=2 k^{2}-\lfloor k / 2\rfloor$.

For $k \geq 3$, by Lemmas 2,11 and 12 (7), the span of an antipodal labeling f for $C_{4 k}$ has

$$
\begin{aligned}
& f\left(x_{4 k-1}\right)=\sum_{i=0}^{8} f_{i}+\sum_{i=1}^{\lfloor(4 k-9) / 8\rfloor}\left(\sum_{j=1}^{8}\left(f_{8 i+j}\right)\right) \\
& +f_{8\lfloor(4 k-1) / 8\rfloor+1}+f_{8\lfloor(4 k-1) / 8\rfloor+2}+\cdots+f_{4 k-2} \\
& \geq\left\{\begin{array}{c}
(4 k+2)+\left[2 k^{2}-(11 / 2) k-3 / 2\right]+k, k \text { is odd } \\
(4 k+2)+\left[2 k^{2}-(15 / 2) k-2\right]+3 k, k \text { is even }
\end{array}\right. \\
& =2 k^{2}-\lfloor k / 2\rfloor \text {. }
\end{aligned}
$$

Proof of Theorem 9. It remains to find an antipodal labeling for $C_{4 k}$ with span $2 k^{2}-1$. First, we label the vertices x_{0}, x_{2}, $\cdots, x_{4 k-2}$, by $\pi(0)=0$ and $f\left(x_{0}\right)=0$; and for $1 \leq i \leq 2 k-1$,

$$
\begin{gathered}
\pi(2 i)= \begin{cases}(\pi(2 i-2)+k) & \bmod n, \\
\text { if } i \text { is odd } \\
(\pi(2 i-2)+k+1) & \bmod n, \\
\text { if } i \text { is even, }\end{cases} \\
f\left(x_{2 i}\right)= \begin{cases}f\left(x_{2 i-2}\right)+k, & \text { if } i \text { is odd } \\
f\left(x_{2 i-2}\right)+k+1, & \text { if } i \text { is even. }\end{cases}
\end{gathered}
$$

Secondly, we label the remaining vertices by: For $0 \leq i \leq$ $2 k-1$,

$$
\pi(2 i+1)=(\pi(2 i)+2 k) \bmod n, \text { and } f\left(x_{2 i+1}\right)=f\left(x_{2 i}\right)
$$

See Figure 4 for an example.
By calculation, one gets the following for $0 \leq i \leq k-1$:

$$
\begin{array}{lll}
\pi(4 i) & \equiv i(2 k+1) & (\bmod n) . \\
\pi(4 i+1) & \equiv(i+2 k)(2 k+1) & (\bmod n) . \\
\pi(4 i+2) & \equiv \begin{cases}(i+3 k)(2 k+1) & (\bmod n), \\
(i+k)(2 k+1) & (\bmod n), \\
\text { if } k \text { is odd } ;\end{cases} \\
\pi(4 i+3) & \equiv \begin{cases}(i+k)(2 k+1) & (\bmod n), \\
(i+3 k)(2 k+1) & (\bmod n), \\
\text { if } k \text { is odd }\end{cases} \\
(i+2 k e n .
\end{array}
$$

Figure 4: An antipodal labeling for C_{12} with minimum span $\operatorname{an}\left(C_{12}\right)=17$.

Therefore, we conclude
$\{\pi(i): 0 \leq i \leq 4 k-1\}=\{j(2 k+1) \bmod n: 0 \leq j \leq 4 k-1\}$.
Because $\operatorname{gcd}(n, 2 k+1)=1, \pi$ is a permutation. Similar to the proof of Theorem 4, it is straightforward to show that f is an antipodal labeling, and we shall leave the details to the reader. This completes the proof of Theorem 9.

We conjecture that an $\left(C_{4 k}\right)$ is equal to the upper bound in Theorem 9.

Conjecture 1 For any $k \geq 1$, an $\left(C_{4 k}\right)=2 k^{2}-1$.
A case analysis has confirmed the above conjecture for $k \leq 5$.

References

[1] T. Calamoneri and R. Petreschi, " $L(2,1)$-labeling of planar graphs," ACM (2001), 28-33.
[2] G. J. Chang, and C. Lu, "Distance-two labelings of graphs," European J. of Combin., 24 (2003), 53-58.
[3] G. J. Chang and D. Kuo, "The $L(2,1)$-labeling problem on graphs," SIAM J. Discrete Math., 9 (1996), 309-316.
[4] G. Chartrand, D. Erwin, and P. Zhang, "Radio antipodal colorings of cycles," Cong. Numer., 144 (2000), 129-141.
[5] G. Chartrand, D. Erwin, and P. Zhang, "Radio antipodal colorings of graphs," Math. Bohem., 127 (2002), 57-69.
[6] G. Chartrand, D. Erwin, and P. Zhang, "Radio labelings of graphs," Bull. Inst. Combin. Appl., 33 (2001), 77-85.
[7] G. Chartrand, D. Erwin, and P. Zhang, "Radio k-colorings of paths," Disscuss Math. Graph Theory, 24 (2004), 5-21.
[8] G. Chartrand, D. Erwin, and P. Zhang, "A graph labeling problem suggested by FM channel restrictions," Bull. Inst. Combin. Appl., 43 (2005), 43-57.
[9] Z. Furedi, J. Griggs, and D. Kleitman, "Pair labelings with given distance," SIAM J. Discrete Math., 4 (1989), 491499.
[10] J. Georges, D. Mauro, and M. Whittlesey, "Relating path covering to vertex labelings with a condition at distant two," Discrete Math., 135 (1994), 103-111.
[11] J. Georges, D. Mauro, and M. Whittlesey, "On the λ number of Q_{n} and related graphs," SIAM J. Discrete Math., 8 (1995), 499-506.
[12] J. Griggs and R. Yeh, "Labeling graphs with a condition at distance 2," SIAM J. Discrete Math., 5 (1992), 586-595.
[13] R. Khennoufa and O. Tongni, "A note on radio antipodal colourings of paths," Math. Bohem., 130 (2005), 277-282.
[14] D. Liu, and R.K. Yeh, "On distance two labelings of graphs," Ars Combin., 47 (1997), 13-22.
[15] D. Liu, "Radio number for trees," Discrete Math., to appear.
[16] D. Liu and M. Xie, "Radio number for square cycles," Cong. Numer., 169 (2004), 105-125.
[17] D. Liu and M. Xie, "Radio number for square paths," Ars Combin., to appear.
[18] D. Liu and X. Zhu, "Multi-level distance labelings for paths and cycles," SIAM J. Discrete Math., 19 (2005), 610-621.
[19] P. Zhang, "Radio Labelings of Cycles," Ars. Combin., 65 (2002), 21-32.

[^0]: *Department of Computer Science and Information Engineering, National Chi Nan University, Nantou 54561, Taiwan. Email: jsjuan@ncnu.edu.tw. Supported in part by the National Science Council under grant NSC95-2918-I-260-002.
 ${ }^{\dagger}$ Corresponding author. Department of Mathematics, California State University, Los Angeles, CA 90032. Email: dliu@calstatela.edu. Supported by the National Science Foundation, USA, under grant DMS 0302456.

