Comprehensive Examination – Topology

Fall 2004

Beer*, Chabot, Verona

Do any five of the problems that follow. Each problem is worth 20 points. The set of positive integers is denoted by \(N \), the set of rationals by \(Q \), and the set of real numbers by \(R \). The notation \(A^c \) means the complement of the set \(A \) with respect to an understood universal set. The notation \(A \setminus B \) means \(\{ a : a \in A \text{ and } a \notin B \} \).

1. Prove that each metric space \((X, d)\) is normal.

2. (a) Give an example of a connected topological space that is not locally connected.
 (b) Give an example of a topological space that is not separable. Justify your answer.

3. Let \((X, \tau)\) and \((Y, \sigma)\) be topological spaces and let \(f : X \to Y \) be continuous.
 (a) Assuming that \(Y \) is Hausdorff, prove that the graph of \(f \), \(\Gamma(f) = \{(x, y) : x \in X, y = f(x)\} \)
 is a closed subset of \(X \times Y \) equipped with the product topology.
 (b) Prove that \(\Gamma(f) \) equipped with the relative topology is homeomorphic to \(X \).

4. Let \((X, \tau)\) and \((Y, \sigma)\) be topological spaces and let \(f : X \to Y \). Prove that \(f \) is continuous if
 and only if for each subset \(A \) of \(X \) we have \(f(A^c) \subseteq f(A) \). Here \(E \) denotes the closure of \(E \).

5. Let \((X, \tau)\) be a compact Hausdorff space.
 (a) Let \(F \) be a nonempty closed subset of \(X \). Prove that \(F \) equipped with the relative topology is compact.
 (b) Let \(f : X \to X \) be continuous, one-to-one, and onto. Prove that \(f \) is a homeomorphism.

6. (a) What is meant by \(\text{diam}(A) \), the diameter of a nonempty subset \(A \) of a metric space \((X, d)\)?
 (b) Let \(< A_n >\) be a sequence of nonempty closed sets in a complete metric space \((X, d)\) such
 that for any \(n \) \(A_{n+1} \subseteq A_n \) and \(\lim_{n \to \infty} \text{diam}(A) = 0 \). Prove that \(\bigcap_{n=1}^{\infty} A_n \neq \emptyset \).

7. Let \((X, \tau)\) and \((Y, \sigma)\) be topological spaces.
 (a) Suppose that \(A \) is closed subset of \(X \) and \(B \) is closed subset of \(Y \). Prove or produce a
 counterexample: \(A \times B \) is a closed subset of \(X \times Y \) equipped with the product topology.
 (b) Suppose \(E \) is a closed subset of \(X \times Y \) equipped with the product topology. Prove or
 produce a counterexample: \(\pi_X(E) = \{ x \in X : \exists y \in Y \text{ with } (x, y) \in E \} \).