Comprehensive Examination – Topology

Fall 2002
G. Beer, P. Chabot, A. Verona*

Do five problems, including the first one. Each problem is worth 20 points. The set of positive integers is denoted by \mathbb{N}, the set of rationals by \mathbb{Q}, and the set of real numbers by \mathbb{R}. The notation A^c means the complement of the set A with respect to an understood universal set. The notation $A \setminus B$ means $\{a : a \in A \text{ and } a \notin B\}$.

1. Explain carefully the following concepts:
 (a) Locally connected space.
 (b) Uniformly continuous function between two metric spaces.
 (c) Normal space.
 (d) Separable space and second countable space.
 (e) Compact topological space.
 (f) Basis for a topology.

2. Let d_1 and d_2 be metrics on the same space X and let τ_1 and τ_2 be the corresponding topologies. Prove that the following are equivalent:
 (a) Whenever $(x_n) \xrightarrow{d_1} x$ then $(x_n) \xrightarrow{d_1} x$ (that is whenever a sequence converges with respect to d_1 it also converges with respect to d_2, and to the same limit).
 (b) $\tau_1 \subseteq \tau_2$

3. Let X and Y be topological spaces with X connected and let $f : X \to Y$ be continuous.
 (a) Prove that $f(X)$ is connected.
 (b) Prove that $\Gamma(f) = \{(x, f(x)) : x \in X\}$ is connected as a subspace of $X \times Y$.

4. On \mathbb{R} consider the following family of subsets:
 $$\tau = \{D \subseteq \mathbb{R} : D = \emptyset, \text{ or } D = \mathbb{R} \text{ or the complement of } D \text{ is countable}\}.
 $$
 (a) Prove that τ is a topology on \mathbb{R}.
 (b) Show that any convergent (in τ) sequence is eventually constant (that is, whenever $\lim_{n \to \infty} x_n = x$ there exists N_0 such that $x_n = x$ if $n > N_0$).

5. Prove that a topological space is (Hausdorff) if and only if $D = \{(x, x) \in X \times X : x \in X\}$ is closed as a subspace of $X \times X$ endowed with the product topology.

6. Prove that every (Hausdorff) compact regular space is normal.