Do five of the following seven problems. Each problem is worth 20 points. Please write in a fairly soft pencil (number 2) (or in ink if you wish) so that your work will duplicate well. There should be a supply available.

Exams are being graded anonymously, so put your name only where directed and follow any instructions concerning identification code numbers.

Notation: \(\mathbb{C} \) denotes the set of complex numbers.
\(\mathbb{R} \) denotes the set of real numbers.
\(\text{Re}(z) \) denotes the real part of the complex number \(z \).
\(\text{Im}(z) \) denotes the imaginary part of the complex number \(z \).
\(\overline{z} \) denotes the complex conjugate of the complex number \(z \).
\(|z| \) denotes the absolute value of the complex number \(z \).
\(\log z \) denotes the principal branch of log \(z \).
\(\arg z \) denotes the principal branch of \(\arg z \).
\(D(z; r) \) is the open disk with center \(z \) and radius \(r \).
A domain is an open connected subset of \(\mathbb{C} \).

MISCELLANEOUS FACTS

\[
\begin{align*}
2 \sin a \sin b &= \cos(a - b) - \cos(a + b) \\
2 \cos a \cos b &= \cos(a - b) + \cos(a + b) \\
2 \sin a \cos b &= \sin(a + b) + \sin(a - b) \\
2 \cos a \sin b &= \sin(a + b) - \sin(a - b) \\
\sin(a + b) &= \sin a \cos b + \cos a \sin b \\
\cos(a + b) &= \cos a \cos b - \sin a \sin b \\
\tan(a + b) &= \frac{\tan a + \tan b}{1 - \tan a \tan b} \\
\sin^2 a &= \frac{1}{2} - \frac{1}{2} \cos(2a) \\
\cos^2 a &= \frac{1}{2} + \frac{1}{2} \cos(2a)
\end{align*}
\]
Fall 2003 # 1. a. (12 points) Describe and sketch each of the following regions. (Giving reasons for your answers.)

(i) \(A = \{ z \in \mathbb{C} : \text{Im} \left(\frac{z+1}{z-1} \right) < 0 \} \)

(ii) \(B = \{ z \in \mathbb{C} : \text{Re} \left(\frac{z+1}{z-1} \right) < 0 \} \)

b. (8 points) Find a fractional linear (Möbius) transformation \(f \) such that

\[f(i) = -i, \quad f(0) = -1, \quad \text{and} \quad f(-1) = 0. \]

(You may do parts a and b in either order, and they may or may not be related.)

Fall 2003 # 2. Suppose \(f : \Omega \to \mathbb{C} \) is analytic on an open subset \(\Omega \) of \(\mathbb{C} \). For \(z = x + iy \) in \(\Omega \) with \(x \) and \(y \) real, let \(u(x, y) = \text{Re}(f(x + iy)) \) and \(v(x, y) = \text{Im}(f(x + iy)) \)

a. State the Cauchy-Riemann equations for \(u \) and \(v \) and show how they follow from the existence of \(f'(z) \).

b. Show that \(u \) and \(v \) are harmonic on \(\Omega \).

c. Find a harmonic conjugate \(v(x, y) \) for the function \(u(x, y) = 1 + 2x + y^3 - 3x^2y \).

Fall 2003 # 3. Find the Laurent series for \(f(z) = \frac{1}{(z-1)(z-2)} \) valid in each of the following regions.

a. \(A = \{ z \in \mathbb{C} : 0 < |z-1| < 1 \} \)

b. \(B = \{ z \in \mathbb{C} : 1 < |z-1| \} \)

Fall 2003 # 4. Let \(f(z) = \frac{z^2}{e^z - 1} \).

a. Find all the singularities of \(f \) in \(\mathbb{C} \) and classify each as a removable singularity, a pole, or an essential singularity. For poles, specify the order of the pole.

b. Evaluate \(\int_{\gamma} f(z) \, dz \) for each of the following paths \(\gamma \).

(i) the circle of radius 1 centered at 0 traveled once counterclockwise

(ii) the circle of radius 8 centered at 0 traveled once counterclockwise

Fall 2003 # 5. Let \(f : \mathbb{C} \to \mathbb{C} \) and \(g : \mathbb{C} \to \mathbb{C} \) be analytic on all of \(\mathbb{C} \).

a. Show that if \(\lim_{z \to \infty} |g(z)| = 0 \), then \(g(z) = 0 \) for all \(z \) in \(\mathbb{C} \).

b. Show that if \(\lim_{z \to \infty} |f'''(z)| = 0 \), then \(f \) must be a polynomial.
Fall 2003 # 6. Evaluate each of the following integrals. Show any curves and explain estimates needed to justify your method.

\begin{align*}
\text{a. } & \int_0^{2\pi} \frac{dt}{4 + \sin t} & \text{b. } & \int_{-\infty}^{\infty} \frac{dx}{x^4 + 1} & \text{c. } & \int_{-\infty}^{\infty} \frac{\cos x}{x^2 + 1} \, dx
\end{align*}

Fall 2003 # 7. Consider the problem: Find a function \(f \) with

\[f'(z) - f(z) = z \quad \text{and} \quad f(0) = 1. \]

Suppose \(f \) has a series solution \(f(z) = \sum_{n=0}^{\infty} a_n z^n \) valid in some neighborhood of 0.

\begin{enumerate}
\item Compute what \(a_1 \), \(a_2 \), and \(a_3 \) would have to be.
\item Find what the series would have to be.
\item Show that the series converges to a solution which is an entire function.
\end{enumerate}

(You may leave the solution as an infinite series if you need to.)

End of Exam