Answer five (5) questions only! You must answer at least one from each of Groups, Rings, and Fields. Show enough work to adequately support your answers.

Groups

1. Let G be a group of order 147. Prove that G contains a nontrivial normal abelian subgroup.

2. Prove that \(\text{Aut}(\mathbb{Z}_n) \cong \mathbb{U}_n \). \([\text{Aut}(G) = \{ \phi: G \to G \mid \phi \text{ is an isomorphism} \}]\)
 \([\mathbb{U}_n = \{ k \in \mathbb{Z}_n \mid \text{GCD}(k, n) = 1 \} \] is the group of units in the ring \(\mathbb{Z}_n \). Also known as \(\mathbb{Z}_n^\times \).\]

3. Let p be a prime and assume G is a finite p-group.
 a) Show that the center of G is non-trivial (i.e. $Z(G) \neq \{e\}$).
 b) Let K be a normal subgroup of G of order p. Show that $K \subseteq Z(G)$.

Rings

1. Let R be a finite commutative ring with more than one element and with no zero divisors. Prove that R is a field.

2. Let R be a commutative ring with identity. Define $\rho(I) = \{ x \in R \mid x^n \in I, \text{ for some } n \geq 1 \}$. Prove the following:
 a) If I is an ideal of R, then $\rho(I)$ is an ideal of R.
 b) If $I \subseteq J$ are ideals, then $\rho(I) \subseteq \rho(J)$.
 c) $\rho(\rho(I)) = \rho(I)$.
 d) If I and J are ideals of R, then $\rho(I \cap J) = \rho(I) \cap \rho(J)$.

3. Let F be a field. Prove that every ideal of $F[X]$ is principal.

Fields

1. Let \mathbb{Q} be the rational numbers and let E be the splitting field of $p(X) = X^4 - 2$ over \mathbb{Q}.
 a) Find $[E : \mathbb{Q}]$ and explain your answer.
 b) Show that $\text{Gal}(E/\mathbb{Q})$ is not abelian.

 a) Show that $F(\alpha) = F(\alpha^2)$, for all $\alpha \in E$.
 b) Show that $F(\alpha) = F(\alpha^9)$, for all $\alpha \in E$.

3. Let G be a finite group. Prove that there exists a Galois field extension K/L whose Galois group is isomorphic to G.