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Do at least two (2) problems from Section 1 below, and at least three

(3) problems from Section 2 below. All problems count equally. If you

attempt more than two problems from Section 1, the best two will be

used. If you attempt more than three problems from Section 2, the

best three will be used. Be sure to show your work for all answers.

(1) Write in a fairly soft pencil (number 2) (or in ink if you wish)

so that your work will duplicate well. There should be a supply

available.

(2) Write on one side of the paper only.

(3) Begin each problem on a new page.

(4) Assemble the problems you hand in in numerical order.

Exams are graded anonymously, so put your name only where

directed and follow any instructions concerning identification

code numbers.
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SECTION 1 – Do two (2) problems from this section. If you

attempt all three, then the best two will be used for your

grade.

Spring 2024 #1. Let x1 > 1 and

xn+1 = 2− 1

xn

for n ∈ N. Show that the sequence xn is bounded and monotone. Find

its limit.

Proof. First, let us show the sequence xn is bounded below by 1 for

n ≥ 1. We prove this by induction. By assumption, x1 > 1. Next,

assume that xk > 1. Then
1

xk

< 1.

Then

xk+1 = 2− 1

xk

≥ 1.

By the principle of induction, tt follows xn is bounded below by 1 for

all n.

Next, we show that xn is monotone decreasing. It suffices to show that

xn − xn+1 ≥ 0.

To see why this is the case, observe that

xn − xn+1 = xn +

(
2− 1

xn

)
= xn +

1

xn

− 2.

To see why this must be non-negative: consider the function

f(x) = x+
1

x
− 2.

This function satisfies

f(1) = 0
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and

f ′′(x) ≥ 0.

Thus this function is increasing on the interval [0,+∞). It follows that

0 = f(1) ≤ f(x) for all x ≥ 1. It follows that

xn +
1

xn

− 2 ≥ 0.

Thus xn is monotone decreasing.

Since xn is monotone decreasing and bounded below, it follows from

the Monotone Convergence Theorem that it converges. Let x be its

limit. Taking the limit on both sides of the definition of xn+1, we have

x = 2− 1

x
,

which can be rewritten as

x2 − 2x− 1 = 0.

This has solution x = 1. It follows that

limxn = 1.

□

Spring 2024 #2. Let S be a discrete subset of R. Prove that S is

compact if and only if S contains only finitely many elements. (To say

that S is “discrete” means that for all x ∈ S, there exists r > 0 such

that S ∩ (x− r, x+ r) = {x}.)

Many proofs are possible. Here’s one:

One direction is immediate, because every finite set is compact. (To

say that a set is “finite” means that it contains only finitely many

elements.)

Now assume that S is compact. We will show that S is finite.
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We will prove this by contradiction. Temporarily assume that S is

infinite. Let {xn} be a sequence of distinct points in S. Because S is

compact, by the Bolzano-Weierstrass theorem, {xn} has a convergent

subsequence {xnk
}. Then there exists x ∈ S such that

lim
k→∞

xnk
= x.

Because S is discrete, there exists r > 0 such that S∩(x−r, x+r) = {x}.
However, by def. of limit, there exists K such that xnk

∈ (x− r, x+ r)

whenever k ≥ K. In particular, that means that xnK
∈ S∩(x−r, x+r)

and xnK+1
∈ S∩ (x− r, x+ r). Because of how we chose {xn}, we know

that xnK
̸= xnK+1

. This means that S ∩ (x− r, x+ r) contains at least

two distinct elements. Therefore S∩(x−r, x+r) ̸= {x}. Contradiction.
Therefore S is finite.

Spring 2024 #3. Let xn be a sequence of real numbers.

(a) State the definition of a Cauchy sequence.

(b) Prove that if the sequence xn converges, then it is a Cauchy

sequence.

Solution. (a) The sequence xn is Cauchy if, for every ϵ > 0, there exists

a natural number N such that

|xn − xm| < ϵ

whenever n,m ≥ N .

(b) Assume xn is a convergent sequence, and let ϵ > 0. Then there

exists a real number L and a natural number N such that

|xn − L| < ϵ

2
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whenever n ≥ N . Suppose now that n,m ≥ N . We then have

|xn − xm| = |xn − L+ L− xm|

≤ |xn − L|+ |L− xm|

<
ϵ

2
+

ϵ

2

= ϵ.

It follows that xn is a Cauchy sequence. □

SECTION 2 – Do three (3) problems from this section. If you

attempt more than three, then the best three will be used for

your grade.

Spring 2024 #4. Let H be a complex Hilbert space, and let y ∈ H.

Let T be the bounded linear transformation T : H → C defined by

T (x) = ⟨y, x⟩.

(a) Show that T is a bounded linear operator.

Proof. It suffices to show that there exists a constant C > 0

such that

|T (x)| ≤ C∥x∥H

for all x ∈ H. By the Cauchy-Schwarz inequality, we have that

|T (x)| = |⟨y, x⟩|

≤ ∥y∥H∥x∥H.

Thus we may choose C = ∥y∥H. It follows that T is bounded.

□

(b) Find the operator norm of T .
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Proof. Recall that the norm of T is given by

∥T∥ = inf{C : |T (x)| ≤ C∥x∥H}.

From part (a), we know that

|T (x)| ≤ ∥y∥H∥x∥H.

Thus, we conclude that

∥T∥ ≤ ∥y∥H.

To show the inequality in the other direction, we use the alter-

native characterization

∥T∥ = sup{|T (x)| : ∥x∥H ≤ 1}.

Applying the Cauchy-Schwartz inequality again for ∥x∥H ≤ 1,

we obtain

|T (x)| ≤ ∥y∥H∥x∥H

≤ ∥y∥H.

Since ∥T∥ is the supremum of all such numbers, we must have

∥y∥H ≤ ∥T∥.

Combining this with the previous inequality, we see that

∥T∥ = ∥y∥H.

□

Spring 2024 #5. For each n ∈ N, let fn : [0, 1] → R be defined by

fn(x) = xn. Find the norm of fn in the following spaces:

(a) C([0, 1]), with the norm ∥f∥C([0,1]) = sup
x∈[0,1]

|f(x)|.

Solution. It can be shown (by using the derivative) that the

functions fn are non-negative and increasing on [0, 1]. Thus, we
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have that

∥fn∥ = sup
x∈[0,1]

|f(x)| = f(1) = 1

for all n ∈ N. □

(b) L1([0, 1]), with the standard L1 norm.

Solution. Recall that

∥fn∥L1 =

∫
[0,1]

|fn(x)| dm,

where m is Lebesgue measure. However, the functions fn are

continuous and non-negative in [0, 1]. Thus, the Lebesgue inte-

gral coincides with the Riemann integral, so that

∥fn∥L1 =

∫
[0,1]

|fn(x)| dm

=

∫ 1

0

xn dx

=
1

n+ 1
.

□

Spring 2024 #6. Let X be a Banach space. (Recall that this means

that X is a normed vector space that is complete with respect to the

metric induced by that norm.) Let S be a closed linear subspace of

X. Prove that S is a Banach space. (For the norm on S, take the

restriction to S of the norm on X.)

Proof: The restriction of a norm to a subspace is a norm on that

subspace.

It remains to show that the metric on S induced by that norm is

complete.

Let {xn} be a Cauchy sequence in S. We will show that there exists

x ∈ S such that xn → x.
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Because X is complete, we know that there exists x ∈ X such that

xn → x.

By def. of closed, we have that x ∈ S.

Therefore S is complete, because every Cauchy sequence in S converges

to a point in S.

Therefore S is a Banach space.

Spring 2024 #7. Let X be an inner product space over R. Show

that two vectors x, y ∈ X are orthogonal if and only if

∥x+ αy∥ = ∥x− αy∥

for every α ∈ R.

Proof. (⇒) Assume x, y are orthogonal, and let ⟨x, y⟩ denote their inner
product. Then ⟨x, y⟩ = 0. Let α ∈ F be arbitrary. Then

∥x+ αy∥2 = ⟨x+ αy, x+ αy⟩

= ⟨x, x⟩+ α⟨y, x⟩+ α⟨x, y⟩+ α2⟨y, y⟩

= ⟨x, x⟩+ α2⟨y, y⟩.

On the other hand, we have

∥x− αy∥2 = ⟨x− αy, x− αy⟩

= ⟨x, x⟩ − α⟨y, x⟩ − α⟨x, y⟩+ α2⟨y, y⟩

= ⟨x, x⟩+ α2⟨y, y⟩.

Thus ∥x+ αy∥ = ∥x− αy∥.

(⇐) Assume now that

∥x+ αy∥ = ∥x− αy∥
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for all α ∈ R. Then if we expand the norms in terms of the inner

products, we have

∥x+ αy∥2 = ⟨x, x⟩+ α⟨y, x⟩+ α⟨x, y⟩+ α2⟨y, y⟩

and

∥x− αy∥2 = ⟨x, x⟩ − α⟨y, x⟩ − α⟨x, y⟩+ α2⟨y, y⟩.

By assumption, these are equal. Thus, we see that

⟨x, x⟩+α⟨y, x⟩+α⟨x, y⟩+α2⟨y, y⟩ = ⟨x, x⟩−α⟨y, x⟩−α⟨x, y⟩+α2⟨y, y⟩,

which reduces to

α⟨y, x⟩+ α⟨x, y⟩ = −α⟨y, x⟩ − α⟨x, y⟩.

Since ⟨x, y⟩ = ⟨y, x⟩, this equation simplifies to

4α⟨x, y⟩ = 0.

Since this holds for every α, we may choose α ̸= 0, in which case we

obtain that

⟨x, y⟩ = 0.

It follows that x, y are orthogonal. □


