Math 5402

$$
5 / 6 / 20
$$

- One 8.5×11 sheet (one-sided) notes. Just the statements / debs.
No proofs or calculations.

Galois group of finite fields
$\mathbb{F}_{p^{n}}$ is the splitting field of the separable polynomial $x^{p^{n}}-x$ over $\mathbb{F}_{p}=\mathbb{Z}_{p}$. So, $\mathbb{F}_{p^{n}}$ ir Galois oven \mathbb{F}_{p}. Therefore,

$$
\begin{aligned}
& \text { oven } \mathbb{F}_{p} . \text { Therefore, } \\
& \begin{aligned}
\left|\operatorname{Gal}\left(\mathbb{F}_{p^{n}} / \mathbb{F}_{p}\right)\right| & =\left|\operatorname{Aut}\left(\mathbb{F}_{p^{n}} / \mathbb{F}_{p}\right)\right| \\
& =\left[\mathbb{F}_{p^{n}}: \mathbb{F}_{p}\right]
\end{aligned}
\end{aligned}
$$

Claim: $\left[\mathbb{F}_{p n}: \mathbb{F}_{p}\right]=n$
Since $\mathbb{F}_{p^{n}}$ and \mathbb{F}_{p} are finite, there is a basis for $\mathbb{F}_{p^{n}}$ oven \mathbb{F}_{p}. [worst case the basis is all of $\mathbb{F}_{p^{n}}$.]
Suppose $\beta_{1}, \beta_{2}, \ldots, \beta_{k}$ is a basis for $\mathbb{F}_{p^{n}}$ oven \mathbb{F}_{p}. That is,

So, (each a_{i} has p choices)

$$
p^{n}=\left|\mathbb{F}_{p^{n}}\right|=p^{k}
$$

Thus, $k=n$. claim
Thus, $\left|\operatorname{Gal}\left(\mathbb{F}_{p^{n}} / \mathbb{F}_{p}\right)\right|=n$

Consider the Frobenius automorphism

$$
\sigma_{p}: \mathbb{F}_{p^{n}} \longrightarrow \mathbb{F}_{p^{n}} \text { where } \sigma_{p}(x)=x^{p} \text {. }
$$

We proved that σ_{p} is an isomorphism. (13.5)
Also, if $f \in \mathbb{F}_{p}$, then $f^{p}=f$.
Why? $\bar{O}^{p}=\overline{0}$. If $f \neq \overline{0}$, then $f \in \mathbb{F}_{\rho}^{x}$ and $\mathbb{F}_{p}^{x}=\mathbb{Z}_{p}^{x}$ is a group under molt. of size $p-1$. So, $f^{p-1}=T$. So, $f^{p}=f$.
So, $\sigma_{p}(f)=f^{p}=f$ for all $f \in \mathbb{F}_{\rho}$.
Thus, $\sigma_{p} \in \operatorname{Gal}\left(\mathbb{F}_{p} \wedge / \mathbb{F}_{p}\right)$.
Note that

$$
\begin{aligned}
& \text { ole that } \\
& \sigma_{p}^{k}(x)=\left(\left(\left(x^{p}\right)^{p}\right) \cdots\right)^{p}=x^{p^{k}}
\end{aligned}
$$

We know $x^{p^{n}}=x$ for all $x \in \mathbb{F}_{p^{n}}, \not 大$
$\mathbb{F}_{p^{n}}$ is precisely the roots of $x^{p^{n}-x=0}$
So, the order of σ_{p} in $\operatorname{Gal}\left(\mathbb{F}_{p n} / T_{p}\right)$ is at most n. $\left[\right.$ Since $\sigma_{p}^{n}=$ identity $]$

We cannot have $\sigma_{p}^{k}=$ identity (e gl for $1 \leqslant k<n$ since them $x^{p^{k}}-x=0 \quad$ for all $x \in \mathbb{F}_{p^{n}}$. But $x^{p^{k}}-x$ has no multiple roots [its derivative is -1$]$. Se it has at most p^{k} roots in \mathbb{F}_{p}. Not enough roots to make all of \mathbb{F}^{n}. Therefore, σ_{p} has order n and

$$
\begin{aligned}
\text { Therefore, } \\
\begin{aligned}
\operatorname{Gal}\left(\mathbb{F}_{p}{ }^{\prime} / \mathbb{F}_{p}\right) & =\left\langle\sigma_{p}\right\rangle \\
& =\left\{1, \sigma_{p}, \sigma_{p}^{2}, \ldots, \sigma_{p}^{n-1}\right\}
\end{aligned}
\end{aligned}
$$

HO 14.1 \#C
$x^{2}+x+T$ is irreducible oven \mathbb{Z}_{z}.
So,

$$
\begin{aligned}
& x^{2}+x+T \text { is irreducible over } \mathbb{C}_{2} \\
& \text { So, } \mathbb{F}_{4}=\mathbb{Z}_{2}[x] /\left(x^{2}+x+T\right)=\mathbb{Z}_{2}[x] / I \\
& =\{\overline{0}+I, T+I, x+I,(T+x)+I\} \\
& \begin{array}{l}
I=\left(x^{2}+x+T\right) \\
\left(x^{2}+x+T\right)+I=\overline{0}+I \quad x^{2}+I=(-T-x)+I \\
\operatorname{Gal}\left(\mathbb{Z}_{4} /\left(\mathbb{F}_{2}\right)=\left\langle\sigma_{2}\right\rangle=\{i+x)+I\right.
\end{array} \\
& \begin{array}{l}
\left.\sigma_{2}\right\rangle=\left\{\sigma_{2}\right\}
\end{array} \\
& \sigma_{2}(x)=x^{2} \sqrt{(x+I)^{2}=x^{2}+I=(x+T)+I}+
\end{aligned}
$$

14,2
Thy: The extension K / F is Galois iff K is the splitting field of some separable polynomial over F.

Galois
\rightarrow means: $|\operatorname{Aut}(K / F)|=[K: F]$
Separable: no repeated/ multiple roots

Ex: Find Galois group for
$x^{6}-1$ oven C.
roots: $1, \rho_{6}, \rho_{6}^{2}, \rho_{6}^{3}, \rho_{6}^{4}, \rho_{6}^{5}$ where

$$
\begin{aligned}
\rho_{6}=e^{2 \pi i / 6}=e^{\pi i / 3}= & \cos \left(\frac{\pi}{3}\right)+i \sin \left(\frac{\pi}{3}\right) \\
& =\frac{1}{2}+i \frac{\sqrt{3}}{2}
\end{aligned}
$$

$K=Q\left(\rho_{6}\right)$ is the splitting field of the sepmable polynomial $x^{6}-1$ over $C h$. so, $\operatorname{bal}(K / C R)$ is Galois and

$$
\begin{aligned}
& \text { So, Gal }(K / C Q) \text { is Galois } \\
& |\operatorname{Gal}(K / C a)|=[K: C Q]=\left[\operatorname{Ca}\left(\rho_{6}\right): Q\right] \\
& =\operatorname{deg}\left(m_{\rho_{6}, a}(x)\right)=\operatorname{deg}\left(\Phi_{6}(x)\right) \\
& \begin{array}{l}
x^{6}-1=\Phi_{1} \Phi_{2} \Phi_{3} \Phi_{6} \\
\Phi_{6}(x)
\end{array}=\frac{x^{6}-1}{\Phi_{1} \Phi_{2} \Phi_{3}}=\frac{x^{6}-1}{(x-1)(x+1)\left(x^{2}+x+1\right)} \\
& =x^{2}-x+1
\end{aligned}
$$

If $\sigma \in \operatorname{Gal}\left(Q\left(\rho_{6}\right) / Q_{h}\right)$
we just need to calculate $\sigma\left(\rho_{6}\right)$ which must be a root of $\min \rho_{6}, a(x)=\Phi_{6}(x)$

$$
\begin{aligned}
& =\prod_{\substack{1 \leq a \leq 6 \\
g<d \\
a \\
6}}\left(x-\rho_{6}^{a}\right) \\
& =\left(x-\rho_{6}^{1}\right)\left(x-\rho_{6}^{5}\right)
\end{aligned}
$$

another way to get

So, $\sigma\left(\rho_{6}\right)=\rho_{6}$ or $\sigma\left(\rho_{6}\right)=\rho_{6}^{5}$.

$$
\begin{aligned}
& \operatorname{Ch}\left(\rho_{6}\right)=\left\{a+b \rho_{6} \mid a, b \in a\right\} \\
& \operatorname{Gal}\left(\operatorname{Qa}\left(\rho_{6}\right) / Q\right)=\{i, \sigma\} \\
& \text { al })=a+b \rho_{6}
\end{aligned}
$$

where $i\left(a+b \rho_{6}\right)=a+b \rho_{6}$

$$
\rho_{6}^{2}-\rho_{6}+1=0
$$

$$
\rho_{6}^{2}=\rho_{6}-1
$$

$$
\begin{aligned}
& i\left(a+b \rho_{6}=a+b \rho_{6}^{5}\right. \text { extra } \\
& \begin{aligned}
\sigma\left(a+b \rho_{6}\right) & =a+b \\
& =a+b \rho_{6}^{2} \rho_{6}^{2} \rho_{6} \\
& =a+b\left(\rho_{6}-1\right)\left(\rho_{6}-1\right) \rho_{6}=\cdots p i c_{0}
\end{aligned}
\end{aligned}
$$

