$$
\frac{\text { Math } 5402}{4 / 8 / 20}
$$

$$
13.4 \text { - Splitting fields }
$$

and algebraic closures
Def: An extension field K of a field F is called a splitting field for the polynomial $f(x) \in F[x]$ if $f(x)$ factors completely into linear factors in $K[x]$ and $f(x)$ does not factor completely into linear factors oven any proper subfield L of K containing F.

Ex: What is the splitting
field of $f(x)=\left(x^{2}-2\right)\left(x^{2}-3\right)$
over CQ ?

The roots of $f(x)$ are $x= \pm \sqrt{2}, \pm \sqrt{3}$.
So the splitting field of f is $Q(\sqrt{2}, \sqrt{3})$.

In $C Q(\sqrt{2}, \sqrt{3})[x], f$ factors completely into $f(x)=(x-\sqrt{2})(x+\sqrt{2})(x-\sqrt{3})(x+\sqrt{3})$

Ex: Find the splitting field for $x^{3}-2$ over G.
roots of $x^{3}-2$ are:

$$
2^{1 / 3}, 2^{1 / 3} w, 2^{1 / 3} w^{2}
$$

where

$$
\begin{aligned}
\omega & =e^{\frac{2 \pi i}{3}} \\
& =\cos \left(\frac{2 \pi}{3}\right)+i \sin \left(\frac{2 \pi}{3}\right) \\
& =-\frac{1}{2}+i \frac{\sqrt{3}}{2} \\
\left(\omega^{2}\right. & \left.=-\frac{1}{2}-i \frac{\sqrt{3}}{2}\right)
\end{aligned}
$$

Is $C Q\left(2^{1 / 3}\right)$
the splitting field?
(irreducible by
Eisenstein $p=2$)

$$
C\left(2^{1 / 3}\right)=\{\underbrace{\left.\left.a+b\left(2^{1 / 3 /}\right) c\left(2^{1 / 3}\right)^{2} / a, b, c \in Q\right\}\right\}}_{\substack{\text { these ane } \\ \text { all in } \mathbb{R}}}
$$

So, $C h\left(2^{1 / 3}\right) \subseteq \mathbb{R}$.
Thus, $2^{1 / 3} w, 2^{1 / 3} w^{2} \notin C h\left(2^{1 / 3}\right)$.
The splitting field is

$$
\begin{aligned}
& C Q\left(2^{1 / 3}, 2^{1 / 3} \omega, 2^{1 / 3} \omega^{2}\right) \\
& \frac{\text { Claim: }}{\operatorname{co}\left(2^{1 / 3}, 2^{1 / 3} w, 2^{1 / 3} w^{2}\right)} \\
& \omega=-\frac{1}{2}+i \frac{\sqrt{3}}{2} \\
& \omega^{2}=-\frac{1}{2}-i \frac{\sqrt{3}}{2}
\end{aligned}
$$

pf: $C R\left(2^{1 / 3}, 2^{1 / 3} w, 2^{1 / 3} w^{2}\right) \subseteq \mathbb{Q}\left(2^{1 / 3}, i \sqrt{3}\right)$ is clear since $2^{1 / 3}, w \in \mathbb{C}\left(2^{1 / 3} ; i \sqrt{3}\right)$.

Why is $\operatorname{CR}\left(2^{1 / 3}, i \sqrt{3}\right) \subseteq \operatorname{Ch}\left(2^{1 / 3} 2_{\omega}^{1 / 3}\right.$
Because $2^{1 / 3} \in \operatorname{Ch}\left(2^{1 / 3}, 2^{1 / 3} \omega, 2^{1 / 3} \omega^{2}\right) a_{n}$,

$$
\begin{aligned}
& 2\left(2^{1 / 3}\right)^{2}\left(2^{1 / 3} w\right)+1 \\
& \quad=2\left(2^{1 / 3}\right)^{2}\left(2^{1 / 3}\left(-\frac{1}{2}+\frac{\sqrt{3}}{2} i\right)\right)+1 \\
& \quad=\sqrt{3} i
\end{aligned}
$$

So, $\sqrt{3} i \in \operatorname{CR}\left(2^{1 / 3}, 2^{1 / 3} w, 2^{1 / 3} w^{2}\right)$.
So the splitting field of $x^{3}-2$ over $C a$ is

$$
Q\left(2^{1 / 3}, \sqrt{3} i\right)
$$

basis for $Q\left(2^{1 / 3}\right)$ over $Q: 1,2^{1 / 3}, 2^{2 / 3}$ basis for $\mathbb{Q}\left(2^{1 / 3}, \sqrt{3} i\right)$ over $\operatorname{Ca}\left(2^{1 / 3}\right): 1, \sqrt{3} i$

$$
\begin{aligned}
& \text { basis for } \mathbb{Q}\left(2^{2 / 3} \sqrt{3} i\right) \text { over } \mathbb{a}: \\
& 1,2^{1 / 3}, 2^{2 / 3}, \sqrt{3} i, 2^{1 / 3} \sqrt{3} i, 2^{2 / 3} \sqrt{3} i \\
& Q\left(2^{1 / 3}, \sqrt{3 i}\right)=\left\{a+b 2^{1 / 3}+c 2^{2 / 3}+d \sqrt{3} i+e 2^{1 / 3} \sqrt{3} i+f 2^{2 / 3} i \mid\right. \\
& a, b, c, d, e, f \in \mathbb{C}\}
\end{aligned}
$$

Theorem: For any field F,
if $f(x) \in F[x]$, then there exists an extension K of F which is the splitting field for $f(x)$.
proof:
Step 1: We first show that there exists an extension E of F oven which $f(x)$ splits completely into linear factors. We do this by induction on the degree n of f.
If $n=1$, then $f(x)=a x+b \in F(x)$. So its only root $-\frac{b}{a}$ is already in F.
So, $E=F$.
Suppose $n>1$ and the theorem is true for all polys of degree less than n.

If the irreducible factors of $f(x)$ over F all have degree 1 then again F is the splitting field of $f(x)$ and $E=F$.
If this isn't the case then $f(x)=p(x) h(x)$ where $p(x), h(x) \in F[x]$ and $p(x)$ is irreducible over F of degree at least 2 .

$$
\left[\begin{array}{l}
h(x) \\
\text { any could including } \\
1
\end{array} \text { or a constant }\right]
$$

By a previous theorem (The 3 in book) there exists an extension E_{1} of F containing a root α of $p(x)$.

Then,

$$
\begin{aligned}
& f(x)=(x-\alpha) f_{1}(x) \\
&
\end{aligned}
$$

where $f_{1}(x) \in E_{1}[x]$ and $\operatorname{deg}\left(f_{1}\right)<n$.

By the induction hypothesis
(as keep repeating this process) applied to $f_{1}(x)$ we get an extension E of E_{1} where $f_{1}(x)$ factors completely into linear factors.
So, $f(x)=(x-\alpha) f_{1}(x)$
will factor completely into linear factors
in E (since $\alpha \in E t_{o_{0}}$)
step 2: To get a splitting field $\overline{\text { let } K}$ be the intersection

of all subfield L of E where L contains F and $f(x)$ factors completely into linear factors over L. Then K is a splitting field for $f(x)$

