$$
\frac{\text { Math } 5402}{4 / 6 / 20}
$$

week 11

Test 2
Scheduled for $4 / 15$
Move to $4 / 22$

$$
13.2 \text { - continued... }
$$

Def: Let F be a field and α be algebaic oven F. The unique irreducible and monic polynomial in $F[x]$ having α as a coot will be denoted by $m_{\alpha, F}(x)$ and is culled the minimal polynomial for α oven F. The degree do $m_{\alpha, F}(x)$ is sometimes called the degree of α over F.
$E x:$

$$
\begin{aligned}
: \quad \alpha & =2^{1 / n} \\
F & =Q \\
f(x) & =x^{n}-2
\end{aligned}
$$

- $x^{n}-2 \in C l[x]$
- $f\left(2^{1 / n}\right)=0$
- $x^{n}-2$ is monic
- Using Eisenstein w/ $p=2$ gives that $x^{n}-2$ is irreducible over C.

So, $m_{2^{1 n}, Q}(x)=x^{n}-2$

The: Let α be algebraic oven a field F. Then,

$$
F(\alpha) \cong F[x] /\left(m_{\alpha, F}(x)\right)
$$

$$
\text { So, }[F(\alpha): F]=\operatorname{deg}\left(m_{\alpha, F}(x)\right)
$$

Ex:

$$
\begin{aligned}
& {\left[Q\left(2^{1 / n}\right): Q\right]=\operatorname{deg}\left(x^{n}-2\right)=n}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
=\left\{a_{0}+a_{1}{ }^{2}+a_{2} 2{ }^{2 / 2}+\cdots+a_{n-1} 2^{(n-1 / n} \mid a_{i} \in Q\right\} \\
=\left\{a_{0}+a_{1} 2^{2 n}+a_{2} 2^{2}+\cdots\right.
\end{array}
\end{aligned}
$$

Vector space theorem
Let F, K, L be fields with

$$
F \subseteq K \subseteq L
$$

Then,

$$
[L: F]=[L: K][K: F]
$$

(if these \#s one finite)
proof (sketchy):
proof is Thu 14
Let $\left\{\beta_{1}, \beta_{2}, \ldots, \beta_{n}\right\}$ is a basis for K ven F and $\left\{\gamma_{1}, \gamma_{2}, \ldots, \gamma_{n}\right\}$ is a basis for L over K. Then

$$
\left\{\begin{array}{l|l}
\text { a basis tor } \\
\beta_{i} \gamma_{j} & 1 \leq i \leq n \\
1 \leq j \leq m
\end{array}\right\}=\left\{\begin{array}{l}
\left\{\beta_{1} \gamma_{1}, \beta_{2} \gamma_{1}, \ldots, \beta_{n} \gamma_{1},\right. \\
\beta_{1} \gamma_{2}, \beta_{2} \gamma_{2}, \ldots, \beta_{n} \gamma_{2}, \ldots \\
\ldots, \beta_{1}, \gamma_{m}, \beta_{2} \gamma_{m}, \ldots, \beta_{1} \gamma_{m}
\end{array}\right\}
$$

is a basis for L oven F.

Ex: $\left[Q\left(2^{1 / 6}\right): C R\right]_{A}=6$

$$
m_{2^{16}, Q}(x)=x^{6}-2
$$

Is $C(\sqrt{2}) \subseteq C\left(2^{1 / 6}\right) \mathbb{R}_{0}$ Yes: $\sqrt{2}=\left(2^{1 / 6}\right)^{3} \in \operatorname{CR}\left(2^{1 / 6}\right)$

$$
[Q(\sqrt{2}): Q]=2
$$

$$
m_{\sqrt{2}, a}(x)=x^{2}-2
$$

By previous theorem,

$$
\underbrace{\left[Q\left(2^{1 / 6}\right): Q Q\right]}_{6}=\left[Q\left(2^{1 / 6}\right): Q(\sqrt{2})\right] \underbrace{}_{2}](Q(\sqrt{2}): Q)
$$

So, $\left[\operatorname{CQ}\left(2^{1 / 6}\right): \operatorname{CR}(\sqrt{2})\right]=3$
$Q\left(2^{1 / 6}\right)$

Note $x^{3}-\sqrt{2} \in C(\sqrt{2})$.
$2^{1 / 6}$ is a coot of $x^{3}-\sqrt{2}$.
Note that $(Q(\sqrt{2}))\left(2^{1 / 6}\right)=$

$$
\begin{aligned}
& \text { Note that } \\
& =Q\left(\sqrt{2}, 2^{1 / 6}\right)=Q\left(2^{1 / 6}\right) \\
& \left.\sqrt{\sqrt{2} \in Q\left(2^{16}\right)}\right]
\end{aligned}
$$

Next page we will show

$$
F(\alpha, \beta)=(F(\alpha \mid)(\beta)
$$

So, $3=\left[\operatorname{Ch}\left(2^{1 / 6}\right): \operatorname{Qa}(\sqrt{2})\right]$

$$
\begin{aligned}
& \text { So, } 3=\left[\operatorname{Cl}\left(2^{1 / 6}\right): Q_{1}(\sqrt{2})\right] \\
& =\left[\left(Q_{1}(\sqrt{2})\right)\left(2^{1 / 6}\right): Q_{h}(\sqrt{2})\right]=\operatorname{deg}\left(M_{2^{1 / 6}, \operatorname{Co(\sqrt {2})}}(x)\right) \\
&
\end{aligned}
$$

So, $\min _{2^{1 / 6},} \boldsymbol{Q}(\sqrt{2})(x)=x^{3}-\sqrt{2}$

The: $F(\alpha, \beta)=(F(\alpha))(\beta)$
(Lemma 16 in the book)
Ex: Consider $C((\sqrt{2}, \sqrt{3})$.

What is n ?
Note that

$$
\begin{aligned}
& \text { ore that } \\
& x^{2}-3 \in \operatorname{Ch}(\sqrt{2})[x] \text {. }
\end{aligned}
$$

And $\sqrt{3}$ is a coot of $x^{2}-3$. Let's show that $x^{2}-3$
is irreducible over $\mathbb{Q}(\sqrt{2})=\left\{a+b \sqrt{2} / a, b_{\in Q}\right\}$ Since $x^{2}-3$ has degree 2 , we can just Show it has no roots in $\operatorname{Ca}(\sqrt{2})$ and thus its irreducible oven $Q(\sqrt{2})$. The roots of $x^{2}-3$ are $\pm \sqrt{3}$. Suppose $\sqrt{3} \in C(\sqrt{2})$. Then, $\sqrt{3}=a+b \sqrt{2}$ where $a, b \in Q$. If $b=0$, then $\sqrt{3}=a \in C Q$ which isn't the case. If $a=0$, then $\sqrt{\frac{3}{2}}=\frac{\sqrt{3}}{\sqrt{2}}=b \in Q$ which isn't the case.

If $a \neq 0$ and $b \neq 0$, then squaring both sides gives $(\sqrt{3})^{2}=(a+b \sqrt{2})^{2}$ which is

$$
3=a^{2}+2 a b \sqrt{2}+2 b^{2}
$$

Then, $\sqrt{2}=\frac{3-a^{2}-2 b^{2}}{2 a b} \in Q$
which cant happen.
Thus, $\sqrt{3} \notin Q_{h}(\sqrt{2})$.
So, $x^{2}-3$ is irreducible over $Q(\sqrt{2})$ and thus $m_{\sqrt{3}}(x)=x^{2}-3$. SO, $C h(\sqrt{2}, \sqrt{3})$

$$
\begin{aligned}
& \left\lvert\, \begin{array}{l}
2=n \\
\mathbb{Q}(\sqrt{2})
\end{array} m_{\sqrt{3}, \cos (\sqrt{2})}(x)=x^{2}-3\right. \\
&
\end{aligned}
$$

So a basis for $C h(\sqrt{2}, \sqrt{3})$ oven

$$
\text { So a basis for }\{1,1 \cdot \sqrt{3}, \sqrt{2} \cdot 1, \sqrt{2} \cdot \sqrt{3}\}
$$ which is $\{1, \sqrt{3}, \sqrt{2}, \sqrt{6}\}$.

So, $[C h(\sqrt{2}, \sqrt{3}): C h]=4$ and

$$
\begin{aligned}
& \text { So, }[\operatorname{Ch}(\sqrt{2}, \sqrt{3}): Q Q] \\
& \operatorname{Ch}(\sqrt{2}, \sqrt{3})=\{a+b \sqrt{3}+c \sqrt{2}+d \sqrt{6} \mid a, b, c, d \in \mathbb{Q}\}
\end{aligned}
$$

