Math 5402
$4 / 20 / 20$
week 13

Finite fields continued.... (13.5)
Theorem: $\mathbb{F}_{p^{n}}^{x}=\mathbb{F}_{p^{n}}-\{0\}$ is a cyclic group under multiplication.

Theorem: For each divisor \bar{m} of $n, \mathbb{F}_{p^{n}}$ has a unique subfield of size p^{m}.
Moreover, these are the only subfield of $\mathbb{F}_{p^{n}}$.

Ex: Subfields of $\mathbb{F}_{5^{3}}$

13.6 - Cyclotomic polynomials and Extensions

Recall if θ is a real number then $e^{i \theta}=\cos (\theta)+i \sin (\theta)$

Let $n \in \mathbb{Z}$, $n \geqslant 1$.

Let

$$
\rho_{n}=e^{\frac{2 \pi i}{n}}=\cos \left(\frac{2 \pi}{n}\right)+i \sin \left(\frac{2 \pi}{n}\right) .
$$

Note that if $0 \leqslant a \leq n-1$, then

$$
\begin{aligned}
\left(S_{n}^{a}\right)^{n}=\left(e^{\frac{2 \pi i}{n} a}\right)^{n}=e^{2 \pi i a} & =\underbrace{\cos (2 \pi a)}_{1}+\underbrace{i}_{0} \sin \left(2 \pi_{a}\right) \\
& =1
\end{aligned}
$$

So, $1, \rho_{n}, \rho_{n}^{2}, \ldots, \rho_{n}^{n-1}$
one distinct and they each
solve $x^{n}-1=0$.
Therefore,

$$
\begin{aligned}
& x^{n}-1= \\
& =\prod_{a=0}^{n-1}\left(x-\rho_{n}^{a}\right)
\end{aligned}
$$

These elements subdivide the unit circle into n slices.

Ex: $x^{3}-1=\left(x-\rho_{3}^{0}\right)\left(x-\rho_{3}^{1}\right)\left(x-\rho_{3}^{2}\right)$

The field $C h\left(\rho_{n}\right)$ is the splitting field for $x^{n}-1$ oven $Q_{\text {, }}$, where $\rho_{n}=e^{2 \pi i / n}$.
The field $C R\left(S_{n}\right)$ is culled the cyclotomic field of n-th roots of unity.

$$
\begin{aligned}
& \text { Let } \\
& \begin{aligned}
\mu_{n} & =\left\{z \in \mathbb{C} \mid z^{n}-1=0\right\} \\
& =\left\{\rho_{n}^{a} \mid 0 \leq a \leq n-1\right\} \\
& =\left\{1, \rho_{n}, \rho_{n}^{2}, \ldots, \rho_{n}^{n-1}\right\}
\end{aligned}
\end{aligned}
$$

μ_{n} is a cyclic grove under multiplication. μ_{n} is called the grove of nth roots of unity oven Q.

The generators of the cyclic group \mathbb{Z}_{n} under addition one the elements $\bar{a} \in \mathbb{Z}_{n}$ where $\operatorname{gcd}(a, n)=1$.
Since $q: \mathbb{Z}_{n} \rightarrow \mu_{n}$ given by $\varphi(\bar{k})=\rho_{n}^{k}$ is an isomorphism of groups (you can check this) we have that the generators of μ_{n} are the elements $\rho_{n}^{a}=\varphi(\bar{a})$ where $1 \leq a \leq n-1$ and $\operatorname{gcd}(a, n)=1$.
[An isomorphism of cyclic groups] maps generators to generators.

Def: If ρ generates μ_{n} as a group under multiplication, then ρ is called a primitive nth root of unity.

So, the primitive nth roots of unity are $\left\{\rho_{n}^{a} \mid \operatorname{gcd}(a, n)=1,1 \leq a \leq n-1\right\}$
$n=2 \quad \mu_{2}=\left\{1, \rho_{2}\right\}$

primitive roots: ρ_{2}^{l}

primitive roots in $\mu_{4}:$	Note $\mu_{2}=\{1,-1\} \subseteq \mu_{4}$
$\rho_{4}=i, S_{4}^{3}=-i$	-1 is a primitive root for μ_{2}

$$
\begin{aligned}
\rho_{4}=e^{\pi / 2 i} & =\cos \left(\frac{\pi}{2}\right)+i \sin \left(\frac{\pi}{2}\right) \\
& =0+i \cdot 1=i
\end{aligned}
$$

And

$$
\begin{aligned}
\mu_{1} & =\{1\} \\
& \subseteq \mu_{4}
\end{aligned}
$$

$n=8$
$\mu_{8}=\left\{1, \rho_{8}, \rho_{8}^{2}, \rho_{8}^{3}, \rho_{8}^{4}, \rho_{8}^{5}, \rho_{8}^{6}, \rho_{8}^{7}\right\}$

μ_{1}	$=\{1\} \leq \mu_{8}$	
μ_{2}	$=\{1,-1\} \leq \mu_{8}$	
μ_{4}	$=\{1, i,-1,-i\}$	primitive roots of μ_{8} are $\rho_{8}^{1}, \rho_{8}^{3}, \rho_{8}^{5}, \rho_{8}^{7}$
	$\leq \mu_{8}$	primitive roots of μ_{4} are $\rho_{8}^{2}=i, \rho_{8}^{6}=-i$
	primitive root of μ_{2} is $\rho_{8}^{8}=-1$	
-primitive root of μ_{1}		

Proposition: $\mu_{d} \leq \mu_{n}$ iff d / n.
proof:
\Leftrightarrow Suppose $\mu_{d} \subseteq \mu_{n}$.
Note that $\left|\mu_{d}\right|=d$ and $\left|\mu_{n}\right|=n$. So, by Lagrange's the, d / n.
(\triangleleft) Suppose $d \mid n$. So, $n=d k$, where
Let $\rho \in \mu_{d}$. So, $\rho^{d}=1$.
Then,

$$
\rho^{n}=\rho^{d k}=\left(\rho^{\alpha}\right)^{k}=1^{k}=1
$$

So, $\rho \in \mu_{n}$.

Def: Define the nth cyclotomic polynomial $\Phi_{n}(x)$ to be

$$
\Phi_{n}(x)=\prod_{\substack{\rho \in \mu_{n} \\ \rho \text { isprimitive }}}(x-\rho)=\prod_{1 \leq a \leq n}\left(x-\rho_{n}^{a}\right)
$$

Note that $\operatorname{degree}\left(\Phi_{n}\right)=\varphi(n)=\#$ generators

$$
\underbrace{\text { ot }_{n}}_{\substack{\text { Euler } \\ \text { Phiction } \\ \text { function }}}\left|\mathbb{Z}_{n}^{x}\right|
$$

The: $x^{n}-1=\prod_{d \ln } \Phi_{d}(x)$
proof: We have that $x^{n}-1=\prod_{\rho \in \mu_{n}}(x-\rho)$
If we grove the elements together based on their orders in the group we get

$$
\begin{aligned}
& x^{n}-1=\prod_{d \ln }^{\substack{\rho \in \mu_{d} \\
\rho \text { is primitive }}}(x-\rho)=\prod_{d \ln } \Phi_{d}(x) \\
& \begin{array}{l}
\rho \text { is primitive } \\
\text { in } \mu_{d}
\end{array}
\end{aligned}
$$

