$$
\frac{\text { Math } 5402}{4 / 15 / 20}
$$

Test 2 - Next weds.
Next Weds, no class.
You'll have a time window ($\geqslant 24 \mathrm{hs}$) and in that window yo choose the 2 hr period you want to take the test.

Window -
Weds morning - Thurs. night
Ill email you the test and post on website. You take it and scan and email back to me.

Theorem: Let F either be PG2 a field of characteristic O (such as Q) or a finite field.

Every irreducible polynomial over F is separable.
A polynomial in $F[x]$ is separable iff it is the product of distinct irreducible polynomials from $F[x]$.

$$
\begin{gathered}
\text { from } F[x] . \\
{\left[\begin{array}{c}
\text { Corollary } 34 / \text { Prop } 37 \\
\text { in the book }
\end{array}\right]}
\end{gathered}
$$

Theorem: Let F be a field pg 3 of characteric p where p is a prime. If $a, b \in F$, then

$$
(a+b)^{p}=a^{p}+b^{p}
$$

and $(a b)^{p}=a^{p} b^{p}$
Thus, the mapping $\varphi: F \rightarrow F$ given by $\varphi(x)=x^{p}$ is a field homomorphism.
Moreover, φ is injective (one-to-one) (If F is finite, 9 is onto.)
Note: If $f: S \rightarrow S$ is a function and s is finite then f is $1-1$ rf f is onto.
proof: Let $a, b \in F$.
Then since F is commutative,

$$
\begin{aligned}
& \text { Then since } \\
& \begin{array}{c}
(a+b)^{p}=a^{p}+\binom{p}{1} a^{p-1} b+\binom{p}{2} a^{p-2} b^{2}+\cdots \\
\ldots+\binom{p}{p-1} a b^{p-1}+b^{p} \\
\text { Note that }\binom{p}{i} \in \mathbb{Z} \text { for } 0 \leq i \leq p,
\end{array}
\end{aligned}
$$

So here we are thinking of

$$
\begin{aligned}
& \text { so here we are thinking ot } \\
& \binom{p}{i} \text { as } \underbrace{1+1+\cdots+1}_{\binom{p}{i} \text { times }} \text { where } 1 \text { is the } \\
& 1 \text { element } \\
& \text { of } F .
\end{aligned}
$$

Claim: $p \left\lvert\,\binom{ p}{i}\right.$ if $1 \leq i \leqslant p-1$.
Why? Note that $\binom{p}{i}=\frac{p!}{i!(p-i)!}=\frac{p(p-1)!}{i!(p-i)!}$ and the numbers $(p-i)$! and i ! only involve factors less than p (since $1 \leq i \leq p-1$). Hence the denominator cannot cancel the p in the numerator. We one using that p is prime here.]

Since $p \left\lvert\,\binom{ p}{i}\right.$ for $1 \leq i \leq p-1$ and F has characteristic p we get that $\binom{p}{i}=0$ for $1 \leq i \leq p-1$. So, $(a+b)^{p}=a^{p}+b^{p}$.
Since F is commutative $(a b)^{p}=a^{p} b^{p}$. So $9: F \rightarrow F$ given by $\varphi(x)=x^{p}$ is a field homomorphism. Let's show φ is one-to-one.
We know $\operatorname{ker}(\varphi)$ is an ideal of F. Since F is a field, $\operatorname{ken}(\varphi)=\{0\}$ or $\operatorname{ken}(\varphi)=F$. But $\phi(1)=1^{p}=1 \neq 0$.
So, $1 \notin \operatorname{ker}(\varphi)$. So, ken $(\varphi) \neq F$. Thus, $\operatorname{ken}(\phi)=\{0\}$ and φ is $1-1$.

The function $\varphi: F \rightarrow F$ given by $\varphi(X)=x^{\rho}$ is called the Frobenius endomorphism on $F \quad\left(\begin{array}{l}\text { Here } \\ \operatorname{char} \\ (F)\end{array}=p\right)$

Tho: Let p be a prime and $\overline{n \in \mathbb{Z}}, n \geqslant 1$. There exists a finite field $\mathbb{F}_{p^{n}}$ of size p^{n}.
proof: Let $\mathbb{F}_{p^{n}}$ be a splitting field for $X^{p^{n}}-X$ oven \mathbb{Z}_{p}. Last time we sow that this polynomial is separable and hence has no multiple roots in $\mathbb{F}_{p^{n}}$. So, $x^{p^{n}}-x$ has precisely p^{n} roots in $\mathbb{F}_{p^{n}}$.

Let $S=\left\{\alpha \in \mathbb{F}_{p^{n}} \mid \alpha^{\left.p^{n}-\alpha=0\right\} \text {. }}\right.$
So, $|S|=p^{n}$.
Note that $\mathbb{Z}_{p} \subseteq S$.
Why? If $x \in \mathbb{Z}_{p}^{x}$,
then $x^{\rho-1}-1=0$.
(since \mathbb{Z}_{p}^{x} is a group of size p^{-1} voider of site $p_{\text {- }}$ motion).
So, $x^{p}-x=0$
or $x^{p}=x$.
This is also true for
This is also
$x=0$. Thus, $x^{p}=x$ for all $x \in \mathbb{Z} p$.
Thus, $x^{p^{n}}=x^{p \cdot p \cdots p}=\left(\left(\left(x^{p}\right)^{p}\right) \cdots\right)^{p}=x, \forall x \in \mathbb{Z}_{p}$.
So, $x^{p^{n}}-x=0 \quad \forall x \in \mathbb{Z}_{p}$.
Thus, $\mathbb{Z}_{p} \subseteq S \subseteq \mathbb{T}_{p^{n}}$.

Let's show $S=\mathbb{F}_{p} n$
Let $\alpha, \beta \in S$. Then $\alpha^{p^{n}}=\alpha$ and $\beta^{p^{n}}=\beta$.
So, $\left(-\beta^{p^{n}}\right)=(-1)^{p^{n}} \beta^{p^{n}}=-\beta \& \begin{aligned} & \text { If } p=2 \\ & -1=1\end{aligned}$
(1) $O^{p^{n}}=0,1^{p^{n}}=1$, so $0 \in S, 1 \in S$.
(2)

$$
\begin{aligned}
& (\alpha-\beta)^{p^{n}}=\alpha^{p^{n}}+(-\beta)^{p^{n}}=\alpha-\beta \\
& \text { repeated use d Frobenius automorphismi } \\
& (a+b)^{p}=a^{p}+b^{p} \\
& \begin{aligned}
& e^{p}:(a+b)^{p^{p}}=\left((a+b)^{p}\right)^{p}=\left(a^{p}+b^{p}\right)^{p} \\
&=\left(a^{p}\right)^{p}+\left(b^{p}\right)^{p}=a^{p^{p}}+b^{p^{2}}
\end{aligned}
\end{aligned}
$$

So, $\alpha-\beta \in S$
(3) $(\alpha \beta)^{p^{n}}=\alpha^{p^{n}} \beta^{p^{n}}=\alpha \beta$.

So, $\alpha \beta \in S$.
(4) $\left(\alpha^{-1}\right)^{p^{n}}=\left(\alpha^{p^{n}}\right)^{-1}=\alpha^{-1}$. So, $\alpha^{-1} \in S$.

By (1), (2), (3), (4) we have that S is a subfield of $\mathbb{F}_{p^{n}}$.

So, S is a field containing all the roots of $x^{p^{n}}-x=0$.
So, S itself is a splitting field of $x^{p^{n}}-x$. So, $\mathbb{F}_{p^{n}}=S$.
And $\left|\mathbb{F}_{p^{n}}\right|=p^{n}$.

Theorem: If F is a finite field then $|F|=p^{n}$ where p is prime. All other finite fields of size p^{n} are isomorphic to F. proof: Let F be a finite field of characteristic p where p is prime. Consider the prime subfield

$$
\begin{aligned}
& \text { prime. Consider } \\
& \mathbb{Z}_{p} \cong\{0,1,1+1,1+1+1, \ldots, \underbrace{1+\cdots+1}_{p-1 \text { times }}\}
\end{aligned}
$$

So, F is an extension of $\mathbb{Z}_{p,} \quad p g \mid 0$ Suppose $\left[F: \mathbb{Z}_{p}\right]=n$

So,
$\left[F: Z_{e}\right]$ most be finite since F is finite

$$
F=\left\{a_{1} \beta_{1}+a_{2} \beta_{2}+\cdots+a_{n} \beta_{n} \mid a_{i} \in \mathbb{Z}_{p}\right\}
$$

where $\left\{\beta_{1}, \ldots, \beta_{n}\right\}$ is a basis for F over \mathbb{Z}.
Thus, $|F|=p \cdot p \ldots p=p^{n}$.

Since $F^{x}=F-\{0\}$ is a group under multiplication of size $p^{n}-1$, we get that $\alpha^{p^{n}-1}=1 \quad \forall \alpha \in F^{x}$. So, $\alpha^{p^{n}}-\alpha=0$ for all $\alpha \in F^{x}$. Also, $O^{p^{n}}-0=0$. so, $\alpha^{P^{n}}-\alpha=0$ for all $\alpha \in F$.

Since $|F|=p^{n}$ and

$$
\alpha^{p^{n}}-\alpha=0 \quad \forall \alpha \in F
$$

we get that F is a splitting field for $X^{p^{n}}-X$.
so, $F \cong \mathbb{F}_{p^{n}}$ since splitting fields are isomorphic.

