Test 2 - Next weds.

Next Weds, no class. You'll have a time window (7,24hrs) and in that window you chouse the 2hr period you want to take the test.

Window -Weds morning - Thurs. night I'll email you the test and post on website. You take it and scan and Email back to me.

Theorem: Let Feither be (P92) a field of characteristic O (such as Q) or a finite field. Every irreducible Polynomial over E is seperable. A polynomial in FCx) is seperable iff it is the product of distinct irreducible polynomials from F[x]. Corollary 34/ Prop 37) in the book

Iheorem: Let F be a field (pg 3) of characteric p where p is a prime. If a, b E F, then $(a+b)^{p} = a^{p} + b^{p}$ and $(ab)^{p} = a^{p}b^{p}$ Thus, the mapping $\varphi: F \rightarrow F$ given by $\varphi(x) = x^{p}$ is a Field homomorphism. Moreover, q is injective (one-to-one) (IFF is finite, p is onto.) Note: If f: S-> S is a function and S is finite then f is I-1 iff f is onto.

proof: Let
$$a, b \in F$$
,
Then since F is commutative,
 $(a+b)^{P} = a^{P} + {\binom{P}{1}}a^{r-1}b + {\binom{P}{2}}a^{P-2}b^{2} + \cdots$
 $\cdots + {\binom{P}{p-1}}ab^{P-1} + b^{P}$.
Note that ${\binom{P}{i}} \in \mathbb{Z}$ for $0 \le i \le P$,
Note that ${\binom{P}{i}} \in \mathbb{Z}$ for $0 \le i \le P$,
Note that ${\binom{P}{i}} \in \mathbb{Z}$ for $0 \le i \le P$,
Note that ${\binom{P}{i}} \in \mathbb{Z}$ for $0 \le i \le P$,
Note that ${\binom{P}{i}} \in \mathbb{Z}$ for $0 \le i \le P$,
 $(\frac{P}{i})$ as $1 + 1 + \cdots + 1$ where 1 is the
 ${\binom{P}{i}}$ as $1 + 1 + \cdots + 1$ where 1 is the
 ${\binom{P}{i}}$ times $0 \ne F$.
Claim: $P | {\binom{P}{i}} \text{ if } | \le i \le P - I$.
Why? Note that ${\binom{P}{i}} = \frac{P!}{i!(P-i)!} = \frac{P(P-I)!}{i!(P-i)!}$
and the numbers $(P-i)!$ and $i!$
only involve factors less than P
only involve factors less than P
invertex the denominator,
(since $1 \le i \le P - I$). Hence the denominator,
(whe one vsing that P is prime here.]

Since P ((i) for Isisp-1 (pgS)and F has characteristic P we get that $\binom{p}{i} = 0$ for $|\leq i \leq p-1$. So, $(a+b)^{r} = a^{r} + b^{r}$. Since F is commutative $(ab)^{P} = a^{P}b^{P}$. So $\varphi: F \rightarrow F$ given by q(x)=x^p is a field homomorphism. Let's show q is one-to-one. We know ker(q) is an ideal of F. Since F is a field, $ken(q)= \{0\}$ or ken(q)=F. But $\varphi(1) = 1' = 1 \neq 0$. So, $1 \notin ker(\varphi)$, So, $ker(\varphi) \neq F$. Thus, ker(q)= { >} and p is |-1.

(p96) The function q: F) F given by $q(X) = x^{p}$ is called the Frobenius endomorphism on F. (Here char(F)=p)

Thm: Let p be a prime and nEZ, nZI. There exists a finite field IFp of size pⁿ. proof: Let IFpr be a splitting field for XP-X over Zp. Last time we sow that this polynomial is seperable and hence has no multiple roots in Fpr. So, xp-x has precisely proots in Fpr.

Let $S = \{ \chi \in \mathbb{F}_{p^n} | \chi^{p^n} = \chi = 0 \}$. (pg.7) S_{0} $|S| = p^{n}$. Note that $\mathbb{Z}_p \subseteq S$. Why? If XEZP, Zp then $\chi^{P-1} = 0$. (Since Zpx is a group of size p-1 under multiplication). So, $\chi^{P} - \chi = 0$ This is also true for or $\chi^{P} = \chi$. x=0. Thus, $X^{P}=x$ for all $x \in \mathbb{Z}_{P}$. Thus, $\chi^{p^n} = \chi^{p \cdot p \cdots p} = (((\chi^p)^p) \cdots)^p = \chi, \forall x \in \mathbb{Z}$ So, $X^{P''} - X = 0$ $\forall X \in \mathbb{Z}_{P}$. Thus, Zp = S = Hpn.

Let's show
$$S = \mathbb{F}_{p^n}$$
.
Let $\alpha, \beta \in S$. Then $\alpha^{p} = \alpha$
and $\beta^{p^n} = \beta$.
So, $(-\beta^{p^n}) = (-1)^{p^n} \beta^{p^n} = -\beta 4$.
 $(-\beta^{p^n}) = (-1)^{p^$

So, S is a field containing pggall the roots of $x^{pn} - x = 0$. So, Sitself is a splitting field of $X^{P}-X$. So, $\mathbb{F}_{p^{n}}=S$. And $|F_{p^n}| = p^n$. $\overline{\mathcal{Q}}$

Theorem: If F is a finite field then IFI=p" where P is prime. All other finite fields of size pⁿ are isomorphiz to F. proof: Let Fbe a finite field of characteristic p where p is prime. Consider the prime subfield $\mathbb{Z}_{p} \cong \{0, 1, 1+1, 1+1+1, \dots, \frac{1+\dots+2}{2}\}$ P-1 times

So, F is an extension of Zp. (pg10) Suppose [F:Zp]=n [F:Zp] Must be finite Since Fis finite Soj $F = \left\{ a_1 B_1 + a_2 B_2 + \dots + a_n B_n \middle| a_i \in \mathbb{Z} \right\}$ where {Pi,..., Pr} is a basis for F over Zp. Thus, $|F| = p \cdot p \cdot \cdots \cdot p = p^{n}$. Choices for for a_{1} a_{2} a_{n} Since F = F - Zog is a group under multiplication of size p^-1, we get that $\chi^{p'-1} = 1 \quad \forall \chi \in F^{\times} \quad S_{0} \quad \chi^{p'-1} = 0$ for all $x \in F^{\times}$. Also, $O^{p^{n}} - 0 = 0$. so, $\alpha^{p} - \alpha = 0$ for all $\alpha \in F$.

Since IFI=pⁿ and (pg 11) $\chi^{p^{n}} - \chi = 0 \quad \forall \chi \in F$ we get that F is a splitting field for XP-X. So, F ~ Fpr since splitting Fields are isomorphic.