$$
\begin{aligned}
& \text { Math } 5402 \\
& 4 / 13 / 20 \\
& \text { week } 12
\end{aligned}
$$

Study guide for test 2 is on the website.
Covers ≤ 13.2
See we bsite for HW covered
13.4 continued...

Def: If K is an algebraic extension of F and is the splitting field oven f for a collection of polynomials in $F[x]$, then K is called a normal extension of F.

Ex:

$$
\begin{aligned}
& F=C Q \\
& K=C Q(\sqrt{2})
\end{aligned}
$$

K is the splitting field of $x^{2}-2$ oven F, so K is a normal extension of F.

Ex: Consider $x^{4}+4$ over C. Note that

$$
x^{4}+4=\left(x^{2}+2 x+2\right)\left(x^{2}-2 x+2\right)
$$

roots of these polys me $\pm 1 \pm i$, ie

$$
(+i, 1-i,-1+i,-1-i .
$$

Let $K=Q(i)$
$K=C Q(\dot{i})$ is the splitting field pg 3 of $x^{4}+4$ oven Ch.

$$
K=C Q(\cdot)
$$

$$
G(i)=\{a+b i \mid a, b \in Q\}
$$

Theorem (The 27 in the book)
Let $\varphi: F \rightarrow F^{\prime}$ be an isomorphism of fields. Let $f(x) \in F[x]$ be a polynomial and let $f^{\prime}(x) \in F^{\prime}[x]$ be the polynomial obtained by applying φ to the coefficients of $f(x)$.

$$
f(x)=\sum_{k=0}^{n} a_{k} x^{k} \longmapsto f^{\prime}(x)=\sum_{k=0}^{n} \varphi\left(a_{k}\right) x^{k}
$$

Let E be a splitting field for $f(x)$ oven F and let E^{\prime} be a splitting field for $f^{\prime}(x)$ wen F^{\prime}.
Then the isomorphism e extends to a_{n} isomorphism $\sigma: E \rightarrow E^{\prime}$ where $\left.\sigma\right|_{F}=\varphi[$ ie $\sigma(x)=\phi(x) \forall x \in F]$

Let $F=F^{\prime}, f(x)=f^{\prime}(x)$ $\varphi=i d e n t i z y$ function in the previous the, we get:

Corollary: Any two splitting fields fur a polynomial $f(x) \in F[x]$ oven F we isomorphic.
commentary:

$$
\begin{aligned}
& K=F[x] /(f(x)) \cong F(\theta) \\
& \theta \text { is } \\
& \begin{array}{l}
\text { a root } \\
\text { of } f
\end{array} \\
& \text { irs. } \\
& p \circ 1 y=f(x)
\end{aligned}
$$

13.5 Seperable and inseparable extensions

Def: Let F be a field and let $f(x) \in F[x]$. Let E be a splitting field for $f(x)$. In E we can factor f into

$$
\begin{aligned}
& f \text { into } \\
& f(x)=c\left(x-\alpha_{1}\right)^{n_{1}}\left(x-\alpha_{2}\right)^{n_{2}} \cdots\left(x-\alpha_{k}\right)^{n_{k}}
\end{aligned}
$$

where $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}$ ane distinct elements from E, and $C \in F$, and $n_{i} \geqslant 1$ for all i.
We say that α_{i} is a multiple root of f if $n_{i} \geqslant 2$, otherwise α_{i} is called a simple root if $n_{i}=1$. n_{i} is called the multiplicity of α_{i}

Def: Let $f(x) \in F(x]$.
We say that f is separable if it has no multiple roots in a splitting fields ic all its roots are simple. Otherwise we call f inseparable.
Ex: $x^{2}-2$ is sep mable oven C s since

$$
\begin{aligned}
& \text { Ch since } \\
& x^{2}-2=(x-\sqrt{2})(x+\sqrt{2})
\end{aligned}
$$

Ex: $x^{4}-4 x^{2}+4$ is inseparable

$$
\begin{aligned}
x^{4}-4 x^{2}+4 & =\left(x^{2}-2\right)\left(x^{2}-2\right) \\
& =(x-\sqrt{2})^{2}(x+\sqrt{2})^{2}
\end{aligned}
$$

Def: Given

$$
f(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}
$$

with $f(x) \in F[x]$, define the derivative of f to be

$$
\begin{aligned}
D_{x} f(x)=n a_{n} x^{n-1}+ & (n-1) a_{n-1} x^{n-2}+\cdots \\
& +2 a_{2} x+a_{1}
\end{aligned}
$$

Note: $D_{x} F(x) \in F[x]$
Also, here the coefficients from the powers are positive integer so can be embedded into the field. Ex: $\quad 5=1+1+1+1+1$ where 1 is the identity of F
D_{x} will satisfy the usual properties like

$$
\begin{aligned}
& \text { roperties like } \\
& D_{x}[f(x)+g(x)]=D_{x} f(x)+D_{x} g(x) \\
& D_{x}[f(x) g(x)]=D_{x} f(x) \cdot g(x)+ \\
& D_{x} g(x) \cdot f(x)
\end{aligned}
$$

Proposition: Let F be a field and $f(x) \in F(x]$. Let E be a splitting field for $f(x)$ wen F. Then $f(x)$ has a multiple root α if α is also a root of $D_{x} f(x)$.
so, $f(x)$ is seperable iff $f(x)$ and $D_{x} f(x)$ share no common roots.
proof:
(\Rightarrow) Suppose α is a multiple root of $f(x)$.
Then, $f(x)=(x-\alpha)^{n} g(x)$
where $g(x) \in E[x]$ and $n \geqslant 2$.

$$
\begin{aligned}
& \text { Then } \\
& D_{x} f(x)= n(x-\alpha)^{n-1} g(x) \\
&+(x-\alpha)^{n} D_{x} g(x) \\
& D_{x} f(\alpha)= n(\alpha-\alpha)^{n-1} g(\alpha) \\
&+(\alpha-\alpha)^{n} D_{x} g(\alpha)=0
\end{aligned}
$$

So, α is a root of $D_{x} f(x)$,
(Δ) Suppose α is a coot of $f(x)$ and $D_{x} f(x)$.

Then, $f(x)=(x-\alpha) h(x)$
where $h(x) \in E[x]$
Thus,

$$
\begin{aligned}
& \text { hus, } \\
& D_{x} f(x)=h(x)+(x-\alpha) D_{x} h(x) \text {. }
\end{aligned}
$$

We know $D_{x} f(\alpha)=0$.
So,

$$
0=h(\alpha)+\underbrace{(\alpha-\alpha) D_{x} h(\alpha)}_{0}
$$

Thus, $h(\alpha)=0$.
So, $h(x)=(x-\alpha) h,(x)$
where $h_{1}(x) \in E[x]$.
Thus, $f(x)=(x-\alpha) h(x)$

$$
\begin{aligned}
& =(x-\alpha) \\
& =(x-\alpha)^{2} h_{1}(x) .
\end{aligned}
$$

So, α is a multiple root of f.

Ex: Let p be a prime,
Consider $x^{p^{n}}-x$ oven \mathbb{Z}_{p}.

$$
\text { Ex: } x^{2^{3}}-x=x^{8}-x \text { were } \mathbb{Z}_{2}
$$

Then,

$$
\begin{aligned}
D_{x}\left[x^{p^{n}}-x\right] & =\bar{p}^{n} x^{p^{n}-1}-\bar{T} \\
& =\bar{o}^{n} x^{p^{n}-1}-\overline{1} \\
& =\overline{-1} \neq \overline{0} \text { in } \mathbb{z}_{p}
\end{aligned}
$$

Since $D_{x}\left[x^{p^{n}}-x\right]$ has no roots, it has no common roots with $x^{p^{n}}-x$ in a splitting field.
So, $x^{p^{n}}-x$ is sepchable over \mathbb{Z}_{p}

Idea later:

Then E will be a finite field of size p^{n}

$$
x^{p^{n}}-x=x\left[x^{p^{n}-1}-1\right]
$$

