Math 5402
$3 / 25 / 20$
Weds
(13.1 continued...)
Ex: Consider $q(x)=x^{3}-3 x^{2}+3 x-3$ Pg By Eisenstein with $\rho=3$, $x^{3}-3 x^{2}+3 x-3$ is irreducible over C.
Let $I=\left(x^{3}-3 x^{2}+3 x-3\right)$ in $Q[x]$. Then

$$
\underbrace{K=\frac{c a[x] / I}{}=\left\{\left(a+b x+c x^{2}\right)+\left.I\right|_{a, b, c \in \mathbb{Q}}\right\}}_{\text {field }}
$$

$\frac{\text { Eisenstein }}{a_{i} \in \mathbb{Z}}$
$a_{n} x^{n}+a_{n-1} x^{n-1}+\ldots+a_{1} x$
prime $+a_{0}$
plan $p \times a_{n}$
$p \mid a_{i} 0 \leq i<n$ $p^{2} X a_{0}$
Then poly is irreducible over Q
Let $\theta \in \mathbb{C}$ that is a root of $x^{3}-3 x^{2}+3 x-3$. Note $\theta \notin C h$ since qi irreducible oven Q

$$
c h(\theta)=\left\{a+b \theta+c \theta^{2} \left\lvert\, \begin{array}{l}
a, b, c \in Q \\
\theta^{3}-3 \theta^{2}+3 \theta-3=0
\end{array}\right.\right\}
$$

Let's compute in

$$
\begin{aligned}
& \text { Let's compute in } \\
& C Q(\theta)=\left\{a+b \theta+c \theta^{2} \left\lvert\, \begin{array}{l}
a, b, c \in Q \\
\theta^{3}-3 \theta^{2}+3 \theta-3=0
\end{array}\right.\right\}
\end{aligned}
$$

Let's calculate $\frac{1}{\theta}$ in $C h(\theta)$.

$$
\begin{aligned}
& \text { Key: } \theta^{3}-3 \theta^{2}+3 \theta-3=0 \\
& \theta^{3}=3 \theta^{2}-3 \theta+3
\end{aligned}
$$

$$
\frac{1}{\theta} \in Q(\theta) \text { since } \theta \neq 0 \text { and } Q(\theta) \text { is a field. }
$$

So, $\frac{1}{\theta}=a+b \theta+c \theta^{2}$ for some $a, b, c \in Q$.

$$
\begin{aligned}
\text { So, } \frac{1}{\theta} & =a \\
\text { Thus, } 1 & =a \theta+b \theta^{2}+c \theta^{3} \\
& =-1+a \theta+b \theta^{2}+c
\end{aligned}
$$

So, $0=-1+a \theta+b \theta^{2}+c\left(3 \theta^{2}-3 \theta+3\right)$
Thus, $O=(-1+3 c)+(a-3 c) \theta+(b+3 c) \theta^{2}$
Since $1, \theta, \theta^{2}$ are lineally independent, we must have

$$
\begin{aligned}
& \text { Since } 1, \theta, \theta \text { are } \\
& \text { we must have } \\
& \left.\begin{array}{r}
3 c=1 \\
-1+3 c=0 \\
a-3 c=0 \\
b+3 c=0
\end{array}\right\} \leftrightarrow \begin{array}{r}
-3 c=0 \\
b+3 c=0
\end{array}
\end{aligned}
$$

$$
\begin{equation*}
\frac{1}{\theta}=a+b \theta+c \theta^{2}=1-\theta+\frac{1}{3} \theta^{2} \tag{pg 4}
\end{equation*}
$$

Method 2:

$$
\begin{aligned}
& \theta^{3}=3 \theta^{2}-3 \theta+3 \\
& \theta^{2}=3 \theta-3+\frac{3}{\theta} \\
& \frac{1}{\theta}=\frac{1}{3} \theta^{2}-\theta+1
\end{aligned}
$$

13.2 -Algebraic Extensions

Def: Let K be an extension of a field F. An element $\alpha \in K$ is said K to be algebraic oven F if α is a root of some nonzero polynomial $f(x) \in F[x]$. If no such f exists then α is called transcendental over F. The extension K / F is algebraic if every $\alpha \in K$ is a lgebraic over F.

Ex: $\sqrt{2}$ is algebraic over Q since $\sqrt{2}$ is a root of $x^{2}-2 \in Q[x]$
i is algebraic oven Q since i is a root of $x^{2}+1 \in G[x]$
π is transcendental oven $C l$. Proof not short.

Def: $a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}$ is called monic if $a_{n}=1$.

Theorem: Let α be algebraic over a field F where $\alpha \in K$ and K is some extrusion field of F. Then there exists a vnique, monic, irreducible poly nomial $g(x) \in F[x]$ with $g(\alpha)=0$.
 Moreover, $f(x) \in F[x]$ has α as a root if $f(x)$ divides $f(x)$ in $F(x)$. proof:
(1) Since α is algebraic over F, there exists some non-zero polynomial with α as a root. let $g(x) \in F(x)$ be a polynomial of minimal degree with α as a root.
We can assume g is monic by\} ie multiplying by a constant. let's show $g(x)$ is irreducible oven F.

Suppose $g(x)$ is reducible.
Then, $g(x)=a(x) b(x)$ where $a(x), b(x) \in F[x]$ are not units.
So, $0<\operatorname{deg}(a(x))<\operatorname{deg}(g(x))$
and $0<\operatorname{deg}(b(x))<\operatorname{deg}(g(x))$
And, $O=g(\alpha)=a(\alpha) b(\alpha)$.
So, either $a(\alpha)=0$ or $b(\alpha)=0$
but this contradicts the minimality of g.
So, $g(x)$ is irreducible in $F[x]$.
Thus there exists a manic, irreducible poly, $g(x) \in F[x]$ with $g(\alpha)=0$.
(2) (Moreover) Let $f(x) \in F[x]$.
(\Leftrightarrow) If $g(x)$ divides $f(x)$ in $F[x)$ then $f(x)=g(x) h(x)$ for some $h(x) \in F[x]$.
So, $\begin{aligned} f(\alpha)=g(\alpha) h(\alpha) & =0 \cdot h(\alpha) \\ & =0\end{aligned}$

$$
=0 .
$$

(\Rightarrow) Suppose $f(\alpha)=0$
By the division algorithm there exists $q(x), r(x) \in F[x]$ where

$$
f(x)=g(x) q(x)+r(x)
$$

and either $r(x)=0$ or $\operatorname{deg}(r(x))<$ $\operatorname{deg}(g(x))$

$$
\text { en, } \left.\begin{array}{rl}
0=f(\alpha) & =g(\alpha) q(\alpha)+r(\alpha) \\
& =0 q(\alpha)+r(\alpha) \\
& =r(\alpha) .
\end{array}\right\} \begin{aligned}
& r \text { has } \\
& \text { as } \\
& \text { a } \\
& \text { root }
\end{aligned}
$$

Then,

So we can't have $\operatorname{deg}(r(x))<\operatorname{deg}(g(x))$ because of the minimality of $g(x)$, unless $r(x)=0$.
Thus, $f(x)=g(x) q(x)$,
So, $g(x)$ divides $f(x)$ in $F[x]$.
(3) (uniqueness of $g(x)$) Suppose $h(x) \in F[x]$ is another manic irreducible polynomial with $h(\alpha)=0$. By part
$g(x)$ divides $h(x)$ in $F[x]$.

So, $h(x)=g(x) a(x)$
where $a(x) \in F[x]$.
Since $h(x)$ is irreducible either $g(x)$ or $a(x)$ is a unit. $g(x)$ isn't a unit because $g(\alpha)=0$, and its non-zero. So, $a(x)=a \in F$.
Thus, $\underbrace{h(x)}_{\text {manic }}=a \underbrace{g(x)}_{\text {manic }}$, where $a \in F$.
So, $a=1$ and $h(x)=g(x)$.
so, $g(x)$ is unique.

$$
\begin{aligned}
& \theta\left(x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}\right) \\
& =a\left(x^{n}+b_{n-1} x^{n-1}+\cdots+b_{1} x+b_{0}\right)
\end{aligned}
$$

