$\frac{\text { Math } 5402}{3 / 23 / 20}$
week 10

Spring Break is still on!
13.1 continued

Def:
Let K be an extension field of a field F. Let $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n} \in K$.
The smallest subfield
 of K containing both F and the elements $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}$ is called the field generated by $\alpha_{1}, \ldots, \alpha_{n}$ over F and denoted by $F\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right)$.

$$
F\left(\alpha_{1}, \ldots, \alpha_{n}\right)=\bigcap_{\substack{E \text { is a field } \\ F \subseteq \in E, \alpha_{1}, \ldots, \alpha_{n} \in E \\ E \subseteq K}}=
$$

If $K=F(\alpha)$, then K is Called a simple extension of F_{1}

Theorem: Let F be a field and let $p(x) \in F[x]$ be a non-constant irreducible polynomial. suppose K is an extension field of F containing a root α of $p(x)$. Then

$$
F(\alpha) \cong F[x] /(p(x))
$$

pf: Consider the ring homomorphism

$$
\begin{aligned}
& \varphi: F[x] \longrightarrow F(\alpha) \\
& \phi(f(x))=f(\alpha)
\end{aligned}
$$

You can check this is

$$
\begin{aligned}
& \text { you can check this is } \\
& \text { a ring hom. } \\
& \text { Ex: } \phi\left(x^{2}+x\right)=\alpha^{2}+\alpha
\end{aligned}
$$

Ex: $\varphi\left(x^{2}+x\right)=\alpha^{2}+\alpha$

$$
\varphi: F(x] \rightarrow F(\alpha), \varphi(f(x))=f(\alpha)
$$

Note that φ maps F to F, ie $\varphi(f)=f$
Since $\varphi(p(x))=p(\alpha)=0$.
for all $f \in F$.
So, $p(x) \in \operatorname{ker}(\varphi)$.
We can now define $\psi: F[x] /(p(x)) \longrightarrow F(\alpha)$

$$
\text { by } \psi[f(x)+(p(x))]=\varphi(f(x))=f(\alpha)
$$

ψ is well-defined: Suppose $f(x)+(\rho(x))=g(x)+(\rho(x))$.
Then, $f(x)-g(x) \in(p(x))$. So, $f(x)-g(x)=p(x) h(x)$.
So,

$$
\left.\begin{array}{rl}
+[f(x)+(\rho(x))]=f(\alpha) & =g(\alpha)+p(\alpha) h(\alpha) \\
& =g(\alpha)+0
\end{array}\right)=g(\alpha) .
$$

$$
\begin{aligned}
& \psi \text { is also a ring homomorphism. } \\
& \psi[(f(x)+(\rho(x)))+[g(x)+(\rho(x))]]=\psi[(f(x)+g(x))+(\rho(x))] \\
& \quad=f(\alpha)+g(\alpha)=\psi[f(x)+(\rho(x)))+\psi(g(x)+(\rho(t))) \\
& \psi[(f(x)+(p(x)))(g(x)+(\rho(x)))]=\psi[f(x) g(x)+(\rho(\alpha))] \\
& =f(\alpha) g(\alpha)=\psi[f(x)+(p(x))] \psi[g(x)+(\rho(x))]
\end{aligned}
$$

Since $p(x)$ is irreducible in $F(x]$, we know that $(p(x))$ is maximal.
So, $F[x] /(p(x))$ is a field.
We know ken (ψ) is an ideal of the field $F[x] /(\rho(x))$ so $\operatorname{ken}(\psi)=\{0+(\rho(x))\}$ or $\operatorname{ken}(\psi)=F[x] /(\rho(x))$.
Since ψ is not the zero map
[for ex $\psi(1+(\rho(x)))=1 \neq 0]$
we know $\operatorname{ken}(\psi) \neq F[x] /(\rho(x))$.
So, $\operatorname{ker}(\psi)=\{0+(\rho(x))\}$.
So, ψ is one-to-one.
Let's now show ψ is onto $F(\alpha)$.

Note,

So, in (ψ) is a subfield of $F(\alpha)$.
$F \leq \operatorname{im}(\psi)$: Let $f \in F$. Then, $\psi(f+(p(x)))=f$.

$$
\begin{aligned}
& F \leqslant \sin (\psi): \text { Let }+\in(p))=\alpha . \\
& \alpha \in \operatorname{in}(\psi): \psi(x+(p(x)))
\end{aligned}
$$

So, since $F(\alpha)$ is the smallest field containing F and α, and $F \leq \operatorname{im}(\psi)$ and $\alpha \in \operatorname{im}(\psi)$, we have $F(\alpha)=\operatorname{im}(\psi)$. So, t is onto.

Using the same objects as in the previous theorem, suppose $p(x)$ has degree n.

$$
\begin{aligned}
& \begin{array}{l}
E x: \\
p(x)=x^{2}-2
\end{array} \quad I=\left(x^{2}-2\right) \\
& p(\sqrt{2})=0
\end{aligned}
$$

Thy 8 from book (pf in book) pg. 8 Let $\varphi: F \rightarrow F^{\prime}$ be an isomorphism of fields. Let $p(x) \in F[x]$ is irreducible and $p^{\prime}(x) \in F^{\prime}[x]$ is obtained by applying Q to the coefficients of $p(x)$. Let α be a root of $p(x)$ [in some extension of F] and let β be a coot of $p^{\prime}(x)[$ in some extension of $\left.F^{\prime}\right]$. Then there is an isomorphism $\sigma: F(\alpha) \rightarrow F^{\prime}(\beta)$ where $\sigma(\alpha)=\beta$ and σ extends φ, that is $\sigma(f)=\varphi(f)$ for all $f \in F$.

