Math 5402
3/16/20
week 9
(1) Test out chat box

Test out un-muting and talking
Test out annotate or $O_{\text {pencil }}^{\infty}$
(2) Canvas site for zoom stuff +
(3) These notes I'll put on the website like normal
(4) I graded the tests. I'm going to email them to you.

Theorem from last time non-constant \&
F is a field and $p(x) \in F[x]$ is 2 irreducible of degree n and let $K=F[x] /(p(x))=F[x] /$ I where $I=(p(x))$. Then,
(1) K is a field with a copy of F inside of K
(2) $K=\left\{\left(a_{0}+a_{1} x+a_{2} x^{2}+\ldots+a_{n-1} x^{n-1}\right)+I\left\{a_{i} \in F\right\}\right.$
(3) The elements $1+I, X+I, x^{2}+I, \ldots, x^{n-1}+I$ form a basis for K over F.
(4) $[K: F]=\operatorname{deg}_{F}(K)=n$

Note: Suppose we want to construct a finite field of size p^{n} where p is prime. Find an irreducible polynomial $f(x) \in \mathbb{Z}_{p}[x]$ of degree n. Then, letting $I=(f(x))$, then

$$
\begin{aligned}
& n \text { Then, letting } I=(f(x) \text {, } \\
& K=\mathbb{Z}_{p}[x] / I=\left\{\left(a_{0}+a_{1} x+\cdots+a_{n-1} x^{n-1}\right)+I \mid\right. \\
& \left.a_{i} \in \mathbb{Z}_{p}\right\}
\end{aligned}
$$

The size of k is p^{n}.

EX: Construct a finite field of size $4=2^{2}$.
$p=2$ of degree $n=2$.

$$
n=2
$$

Let $f(x)=x^{2}+x+1$

$$
\begin{aligned}
& K=\{\overline{0}+I, T+I, x+I,(T+x)+I\} \\
& I=\left(x^{2}+x+T\right)
\end{aligned}
$$

In particular, $\left(x^{2}+x+T\right)+I=\overline{0}+I$
So, $x^{2}+I=(-x-T)+I=(x+T)+I$

$$
\overline{-1}=\text { T in } \mathbb{Z}_{2}
$$

Example calculations:

$$
\begin{aligned}
& (x+I)+((T+x)+I)=(T+\overline{2} x)+I \\
& =T+I \\
& {[(T+x)+I][(T+x)+I]=\left(T+\overline{2} x+x^{2}\right)+I} \\
& =\left(T+x^{2}\right)+I=(T+x+T)+I \\
& \frac{1}{2=0} 5 \\
& =x+I
\end{aligned}
$$

$$
K=\mathbb{Z}_{2}(x) / I / I=\left(x^{2}+x+1\right)
$$

$x+I$ is a root of

$$
P(t)=t^{2}+t+(T+I)
$$

here you can plug elements of K in to $p(t)$

Ex: Consider $f(x)=x^{2}-2$ in $Q[x]$.
$p(x)$ is icredvible over Q since its of degree 2 and the only roots of $P(x)$ are $\pm \sqrt{2} \notin C R$.
[You can also use Eisenstein's criteria.
Let $I=\left(x^{2}-2\right)$ in $\mathbb{Q}[x]$.
Let $K=a[x] / I$.
Then $k=\left\{\left(a_{0}+a_{1} x\right)+I \mid a_{0}, a_{1} \in \mathbb{R}\right\}$

$$
\text { Also, }\left(x^{2}-2\right)+I=0+I \text {. }
$$

So, $x^{2}+I=2+I$.
So, $x+I$ acts like " $\sqrt{2}$ ".
$X+I$ is a root of $p(t)=t^{2}-(2+I)$

$$
t^{2}-2
$$

$$
\begin{aligned}
& \text { moved } \\
& \text { into } K
\end{aligned}
$$

$$
\frac{K=Q[x]}{\substack{x+I \\ 0 \\-x+I}} / I
$$

copy of $C R$

$$
\begin{aligned}
& (x+I)^{2}=x^{2}+I=2+I \\
& (-x+I)^{2}=x^{2}+I=2+I
\end{aligned}
$$

Next time we will define $\underbrace{Q(\sqrt{2})}_{C \text { adjoin } \sqrt{2}}$
to be the smallest field containing $C h$ and $\sqrt{2}$.
We will show

