Math 5402 3/16/20 week 9

Theorem from last time non-constant &
F is a field and
$$p(x) \in F[x]$$
 is irreducible
of degree n and let $K = F[x]/(p(x)) = F[x]/I$
where $I = (p(x))$. Then,
(1) K is a field with a copy of F inside of K
(2) $K = \{(a, +a, X + a_2x^2 + \dots + a_{n-1}x^{n-1}) + I | a_x \in F\}$
(3) The elements $I + I, X + I, x^2 + I, \dots, x^{n-1} + I$
form a basis for K over F.
(4) $[K:F] = deg_F(K) = N$

Note: Suppose we want to construct a finite field of size p" where pisprime, Find an irreducible polynomial f(x) E Zp[x] of degree Λ . Then, letting I = (F(x)), then $K = Z_{P}[X]/T = \{(a_{0} + a_{1}X + \dots + a_{n-1}X^{n-1}) + T\}$ a, eZp} The size of K is p.

 $\left(Pg3 \right)$ Construct a finite field of $4 = 2^2$. EX: Size Need irreducible poly in Z2(x) p=2 of degree n=2. n = 2 $Let f(x) = x^2 + x + 1$ f is irreducible over Z2] $I_n \mathbb{Z}_2[x], let$ $I = (x^2 + x + T).$ Since deg(f]=2, we sust need to show it has no roots in ZZ. $K = Z_2 [x]/I$ $f(\overline{o}) = \overline{O}_{+} \overline{o} + \overline{I} = \overline{I} \neq \overline{o}$ $= \left\{ (a_0 + a_1 x) + I \mid a_0, a_1 \in \mathbb{Z} \right\}$ $f(T) = T^2 + T + T = T \neq 0$ go up to degree n-1=1 So, f is irreducible over ZZ. $S = \{ \delta + I, T + I, X + I, (T + X) + I \}$

 $K = \{ \overline{0} + \overline{1}, \overline{1} + \overline{1}, X + \overline{1}, (\overline{1} + x) + \overline{1} \}$ (P94) $I = (X^{2} + X + \overline{I})$ In ponticular, $(X^{2} + X + \overline{I}) + \overline{I} = \overline{O} + \overline{I}$ So, $X^{2} + I = (-X - T) + I = (X + T) + I$ $\overrightarrow{-1} = T$ in \mathbb{Z}_{2} Example calculations: (X + I) + ((I + X) + I) = (I + ZX) + I $\overline{z=0} = \overline{1+1}$ $\left[\left(\widehat{1}+X\right)+I\right]\left[\left(\widehat{1}+X\right)+I\right]=\left(\widehat{1}+\widehat{2}X+X^{2}\right)+I$ $= (T + \chi^{2}) + T = (T + \chi + T) + T$ = X + T

Ex: Consider $p(x) = x^2 - 2$ in D[x]in Q[x]. p(x) is irreducible over a since its of degree 2 and the only roots of p(x) are ± vz € CR. You can also use Éisenstein's criteria. Let $I = (x^2 - 2)$ in Q[x]. Let K = CR[x]/T. $K = \{(a_0 + a_1 X) + T \mid a_0, a_1 \in \mathbb{Q}\}$ Then $A(s_0, (\chi^2 - 2) + I = 0 + I)$ S_{0} , $\chi^{2} + T = 2 + T$. So, X+I acts like "VZ".

