Homework \# 7 Solutions
(1) Let $\bar{X}=\#$ of 4 s occuring in $n=100$ rolls.
(a) let $p=\frac{1}{6}$. Then

$$
\begin{aligned}
& P(0 \leq \underline{X} \leqslant 15) \approx p\left(\frac{0-100\left(\frac{1}{6}\right)}{\sqrt{100\left(\frac{1}{6}\right)\left(\frac{5}{6}\right)}} \leqslant \frac{\mathbb{X}-100\left(\frac{1}{6}\right)}{\sqrt{100\left(\frac{1}{6}\right)\left(\frac{5}{6}\right)}} \leqslant \frac{15-100\left(\frac{1}{6}\right)}{\left.\sqrt{100\left(\frac{1}{6}\right)\left(\frac{5}{6}\right)}\right)}\right. \\
& \approx \Phi(-0.44721 \ldots)-\Phi(-4.472136 \ldots) \\
& \approx 1-\Phi(0.44721 \ldots)]-[1-\underbrace{\Phi(4.472136 . \ldots)}_{\approx 1}] \\
& \approx 1-0.67 \approx 0.33
\end{aligned}
$$

$$
\begin{aligned}
& \text { (6) (b) } P(\bar{X}=15)=P(14,5 \leqslant X \leqslant 15,5) \\
& =P\left(\frac{14,5-100\left(\frac{1}{6}\right)}{\sqrt{100\left(\frac{1}{6}\right)\left(\frac{5}{6}\right)}} \leqslant \frac{X-100\left(\frac{1}{6}\right)}{\sqrt{100\left(\frac{1}{6}\right)\left(\frac{5}{6}\right)}} \leq \frac{15,5-100\left(\frac{1}{6}\right)}{\sqrt{100\left(\frac{1}{6}\right)\left(\frac{5}{6}\right)}}\right) \\
& \approx \Phi\left(-0,3130495_{1 \prime \prime}\right)-\Phi(-0,58137767 \ldots) \\
& \approx(1-\Phi(0.313))-(1-\Phi(0.581)) \\
& \approx \Phi(0.581)-\Phi(0.313) \approx 0.7190-0.6217 \approx 0.0973
\end{aligned}
$$

(2) Let I be a Poisson random variable with parameter $\lambda>0$.

$$
\begin{aligned}
& \text { (a) } E[\mathbb{X}]=\sum_{k=0}^{\infty} k P(\mathbb{X}=k)=\sum_{k=0}^{\infty} \frac{k e^{-\lambda} \lambda^{k}}{k!} \\
& =e^{-\lambda} \sum_{k=1}^{\infty} \frac{k \lambda^{k}}{k!}=\lambda e^{-\lambda} \sum_{k=1}^{\infty} \frac{\lambda^{k-1}}{(k-1)!}=\lambda e^{-\lambda} \sum_{l=0}^{\infty} \frac{\lambda^{l}}{l!} \\
& =\lambda e^{-\lambda} e^{\lambda}=\lambda \text {. } \\
& e^{x}=\sum_{l=0}^{\infty} \frac{x^{l}}{l!} \\
& {\left[\begin{array}{l}
e^{x}=\sum_{l=0} \frac{x}{l!} \\
e^{\lambda}=\sum_{l=0}^{\infty} \frac{\lambda^{l}}{l!}
\end{array}\right]=\sum_{k=0}^{\infty} k^{2} \frac{e^{-\lambda} \lambda^{k}}{k!}=\lambda e^{-\lambda} \sum_{k=1}^{\infty} \frac{k \lambda^{k-1}}{(k-1)!}} \\
& \text { (b) } E\left[\bar{X}^{2}\right]=\sum_{k=0}^{\infty} k^{2} P(\bar{X}=k) \\
& \begin{array}{l}
\frac{\hat{\gamma}}{} \lambda e^{-\lambda} \sum_{l=0}^{\infty} \frac{(l+1) \lambda^{l}}{l!}=\lambda e^{-\lambda}[\underbrace{\sum_{l=k}^{\infty} \frac{l \lambda^{l}}{l!}}_{\left.\begin{array}{c}
\lambda=0 \\
\text { as calculated } \\
\text { above }
\end{array}\right)}+\underbrace{\sum_{l=0}^{\lambda}} e^{\infty} \frac{\lambda^{l}}{l!}]
\end{array} \\
& =\lambda e^{-\lambda}\left[\lambda e^{\lambda}+e^{\lambda}\right]=\lambda[\lambda+1] \text {. }
\end{aligned}
$$

So, $\operatorname{Var}(\bar{X})=E\left[\bar{X}^{2}\right]-(E[\bar{X}])^{2}=\lambda(\lambda+1)-\lambda^{2}=\lambda$
(3)

Let $\lambda=1$. Then ${ }^{P(k)=} P(\bar{X}=k)=\frac{e^{-1} \cdot(1)^{k}}{k!}=\frac{1}{e \cdot k!}$

k	$\rho(k)=\frac{1}{e, k!}$
0	$\frac{1}{e} \approx 0.367879$
1	$\frac{1}{e} \approx 0.367879$
2	$\frac{1}{2 e} \approx 0,18394$
3	$\frac{1}{6 e} \approx 0,0613132$
4	$\frac{1}{24 e} \approx 0,0153283$
5	$\frac{1}{2 e} \approx 0$.
6	$\frac{1}{720 e} \approx 0,00304546$

If $x<1$, there is only the case that $x=0$
(4) Let \mathbb{X} be the binomial distribution with $n=20$ and $P=0,01$ (here $X=\#$ incorrect)
Then $P(\Sigma \geqslant 1)=1-P(\bar{x}<1)^{=}=1-P(\Sigma=0)$

$$
\begin{aligned}
=1-\binom{20}{0}(0.01)^{0}(0.99)^{20} & \approx 1-0.8179 \\
& \approx 0.182093 .1
\end{aligned}
$$

Poisson approximation

$$
\begin{aligned}
1-p(\neq 0) & \approx 1-\frac{[(20)(0,01)]^{0}}{0!} e^{-20(0,01)} \\
& =1=n p \\
& \approx 1-0.8187 \ldots \approx 0.1813
\end{aligned}
$$

(5) Here we have $n=50$ independent trials each with success rate $p=\frac{1}{100}$ So this is a binomial random variable We approximate this with the Poisson random variable.
Let X be the binomial random variable with $n=50$ and $p=\frac{1}{100}$.
Let $\lambda=n p=\frac{50}{100}=\frac{1}{2}$.
(a)

$$
\begin{aligned}
& \text { Let } \lambda=n p=\frac{20}{100}=\frac{1}{2} \\
& \text { (a) } p(x \geqslant 1)=1-p(x=0) \\
& \approx 1-\frac{\left(\frac{1}{2}\right)^{0}}{0!} e^{-1 / 2} \\
&=1-e^{-1 / 2} \approx 0.393469 \\
& k=1 \\
& \lambda=1 / 2 \\
& \lambda=1 / 2
\end{aligned} \quad \begin{aligned}
& k \\
& \text { (b) } p(x=1) \approx \frac{\left(\frac{1}{2}\right)^{1}}{1!} e^{-\left(\frac{1}{2}\right)}=\frac{1}{2} e^{-1 / 2} \approx 0.303265 \\
& p(x \geqslant 2)
\end{aligned}
$$

(c)

$$
\begin{aligned}
P(x \geqslant 2) & =1-P(x<2) \\
& =1-P(x=0)-P(x=1) \\
& =1-e^{-1 / 2}-\frac{1}{2} e^{-1 / 2} \\
& \approx 0.090204 \ldots
\end{aligned}
$$

