Math 4740
Homework 5
Solutions
(1)
$n=15$ flips
$p=\frac{1}{2}$ (probability of getting heads)
(a) $E[Z]=n p=\frac{15}{2}=7.5$
(b)

$$
\begin{aligned}
P(X=3) & =\binom{15}{3} \cdot\left(\frac{1}{2}\right)^{3} \cdot\left(1-\frac{1}{2}\right)^{15-3} \\
& =\frac{15!}{3!12!} \cdot \frac{1}{2^{3}} \cdot \frac{1}{2^{12}}=\frac{15 \cdot 14 \cdot 13 \cdot 12!}{6 \cdot 12!} \cdot \frac{1}{2^{15}} \\
& =\frac{455}{32,768} \approx 0.0138855 \ldots
\end{aligned}
$$

$$
\begin{aligned}
& \text { (c) } p(\underline{X} \leq 2)=p(\bar{X}=0)+p(\bar{X}=1)+P(\mathbb{X}=2) \\
& =\binom{15}{0} \cdot\left(\frac{1}{2}\right)^{0} \underbrace{\left(\frac{1}{2}\right)^{15}}_{\left(1-\frac{1}{2}\right)^{15}}+\binom{15}{1} \cdot\left(\frac{1}{2}\right)^{1} \cdot \underbrace{\left(\frac{1}{2}\right)^{14}}_{\left(1-\frac{1}{2}\right)^{14}}+\binom{15}{2} \cdot\left(\frac{1}{2}\right)^{2} \cdot \underbrace{\left(\frac{1}{2}\right)^{13}}_{\left(1-\frac{1}{2}\right)^{13}} \\
& =1 \cdot \frac{1}{2^{15}}+15 \cdot \frac{1}{2^{15}}+105 \cdot \frac{1}{2^{15}} \\
& =\frac{121}{32,768} \approx 0,00369263 \ldots
\end{aligned}
$$

(d) We want $P(X \geqslant 2)$.

This would involve calculating

$$
P(\bar{X} \geqslant 2)=P(z=2)+P(\mathbb{X}=3)+\cdots+P(X=15)
$$

It's easier to calculate

$$
\begin{aligned}
P(x \geqslant 2) & =1-P(x<2) \\
& =1-P(X=0)-P(X=1) \\
& =1-\binom{15}{0} \cdot\left(\frac{1}{2}\right)^{0} \cdot\left(\frac{1}{2}\right)^{15}-\binom{15}{1} \cdot\left(\frac{1}{2}\right)^{1} \cdot\left(\frac{1}{2}\right)^{14} \\
& =1-1 \cdot \frac{1}{2^{15}}-15 \cdot \frac{1}{2^{15}} \\
& =1-\frac{16}{2^{15}} \\
& =\frac{32,752}{32,768} \approx 0.999512
\end{aligned}
$$

(2) $n=10$ rolls of the dice

$$
p=\frac{6}{36}+\frac{2}{36}=\frac{8}{36}=\frac{2}{9} \text { \&probability of rolling } 7 \text { or } 11 \text {. }
$$

Probability probability
of rolling of rolling
a
an

$$
\begin{aligned}
& \text { (a) } \begin{aligned}
& E[Z]=n p=10 \cdot\left(\frac{2}{9}\right)=\frac{20}{9} \approx 2,22 \\
&(b) P(X=5)=\binom{10}{5} \cdot\left(\frac{2}{9}\right)^{5} \cdot\left(1-\frac{2}{9}\right)^{10-5} \\
& \text { an } 7
\end{aligned} \\
& \\
& =\frac{10!}{5!5!} \cdot \frac{2^{5}}{9^{5}} \cdot \frac{7^{5}}{9^{5}}=\frac{10,9 \cdot 8 \cdot 7 \cdot 6 \cdot 5!}{120 \cdot 5!} \cdot \frac{2^{5} \cdot 7^{5}}{9^{10}} \\
& \\
& \\
& =252 \cdot \frac{32 \cdot 16,807}{3,486,784,401} \\
& \\
&
\end{aligned}
$$

(3)

$$
\begin{aligned}
& n=10 \\
& p=\frac{1}{36} \leftarrow(\text { probability of rolling double sixes }) \\
& 1-p=\frac{35}{36}
\end{aligned}
$$

$X=\#$ of successes

$$
P(\bar{X} \geqslant 3)=P(\mathbb{X}=3)+P(\bar{X}=4)+\ldots+P(\bar{X}=10)
$$

Instead we do this:

$$
\begin{aligned}
P(\bar{X} \geqslant 3)= & 1-P(\bar{X}<3) \\
= & 1-P(\bar{X}=0)-P(\bar{X}=1)-P(\bar{X}=2) \\
= & 1-\binom{10}{0} \cdot\left(\frac{1}{36}\right)^{0}\left(\frac{35}{36}\right)^{10}-\binom{10}{1} \cdot\left(\frac{1}{36}\right)^{1} \cdot\left(\frac{35}{36}\right)^{9} \\
& -\binom{10}{2} \cdot\left(\frac{1}{36}\right)^{2} \cdot\left(\frac{35}{36}\right)^{8} \\
= & 1-\frac{35^{10}}{36^{10}}-10 \cdot \frac{35^{9}}{36^{10}}-45 \cdot \frac{35^{8}}{36^{10}} \\
= & \frac{11,259,376,953,125}{11,284,439,629,824} \\
\approx & 0.997779 \ldots 1
\end{aligned}
$$

(4) choose choose a $10, J, \epsilon$ there are $16=4+4+4+4$
an ace Q,or $\leftarrow\left(0,5, Q, k^{\prime} s\right.$
(a) $\frac{\binom{4}{1} \cdot\binom{16}{1}}{\binom{52}{2}}=\frac{4 \cdot 16}{\left(\frac{52.51}{2}\right)}=\frac{64}{1326}=\frac{32}{663} \approx 0.04826$
(b) Let \bar{X} be the number of blackjacks in $n=20$ experiments. We have $p=\frac{32}{663} \approx 0.048$ is the probability of success and $1-p=\frac{631}{663} \approx 0.952$

Then,

$$
\begin{aligned}
p(\bar{x} & \geqslant 2)=1-p(\bar{x}<2) \\
& =1-p(\bar{x}=0)-p(\bar{x}=1) \\
& =1-\binom{20}{0} \cdot\left(\frac{32}{663}\right)^{0} \cdot\left(\frac{631}{663}\right)^{20}-\binom{20}{1} \cdot\left(\frac{32}{663}\right)^{1} \cdot\left(\frac{631}{663}\right)^{19} \\
& \approx 1-1 \cdot 1 \cdot(0.952)^{20}-20 \cdot(0.048)(0.952)^{19} \\
& \approx 1-0.3738-0.3769 \\
& \approx 0.2493
\end{aligned}
$$

(5) There are 18 black numbers on the Roulette wheel out of 38 total. Thus,

$$
n=5, p=\frac{18}{38}=\frac{9}{19}, 1-p=\frac{10}{19}
$$

$(a) /(b)$

$$
\begin{aligned}
& (a) /(b) \\
& p(0)=p(z=0)=\binom{5}{0} \cdot\left(\frac{9}{19}\right)^{0} \cdot\left(\frac{10}{19}\right)^{5}=\frac{100,000}{2,476,099} \approx 0.04 \ldots \\
& p(1)=p(z=1)=\binom{5}{1} \cdot\left(\frac{9}{19}\right)^{1} \cdot\left(\frac{10}{19}\right)^{4}=\frac{450,000}{2,476,099} \approx 0.18 \ldots \\
& p(2)=p(z=2)=\binom{5}{2}\left(\frac{9}{19}\right)^{2}\left(\frac{10}{19}\right)^{3}=\frac{810,000}{2,476,099} \approx 0,327 \ldots \\
& p(3)=p(z=3)=\binom{5}{3}\left(\frac{9}{19}\right)^{3}\left(\frac{10}{19}\right)^{2}=\frac{729,000}{2,476,099} \approx 0.294 \ldots \\
& p(4)=p(z=4)=\binom{5}{4}\left(\frac{9}{19}\right)^{4}\left(\frac{10}{19}\right)^{1}=\frac{328,050}{2,476,099} \approx 0.132 \ldots \\
& p(5)=p(z=5)=\binom{5}{5}\left(\frac{9}{19}\right)^{5}\left(\frac{10}{19}\right)^{0}=\frac{59,049}{2,476,099} \approx 0.024 \ldots \\
& p(k)=p(z=k) \quad F(k)=p(z \leq k) \\
& \uparrow
\end{aligned} \quad 1\left\{\begin{array}{l}
1
\end{array}\right.
$$

(c)

$$
\begin{aligned}
P(\bar{x} \geqslant 3) & =P(z=3)+P(z=4)+P(z=5) \\
& =\frac{1,116,099}{2,476,099} \approx 0.450749 \ldots
\end{aligned}
$$

(d) $E[\bar{x}]=n \cdot p=5 \cdot \frac{9}{19}=\frac{45}{19}$

