Math 4740
HF 2 Solutions
(1) (a)

$$
\frac{1-9}{\uparrow} \frac{0-9}{\uparrow} \frac{0-9}{\uparrow} \frac{0-9}{\uparrow} \frac{0-9}{\uparrow} \frac{0-9}{10} \frac{0}{\uparrow} \frac{0}{\uparrow}
$$

There are

$$
9 \cdot 10 \cdot 10 \cdot 10 \cdot 10 \cdot 10=900,000
$$

six digit numbers
(1) (b) Instead we calculate all the six digit numbers without a 5 and subtract this from $I(a)$.

There are

$$
\begin{aligned}
& \text { There are } \\
& \underbrace{900,000}_{\begin{array}{c}
\text { \# six digit } \\
\text { numbers }
\end{array}} \underbrace{8.9 .99 .9 .9 .9}_{\begin{array}{c}
\text { \# six digit } \\
\text { numbers without } \\
\text { a }
\end{array}} \\
& =900,000-472,392 \\
& =427,608
\end{aligned}
$$

six digit numbers without a 5 .
(2)

\# of license plates is

$$
26 \cdot 25 \cdot 24 \cdot 10 \cdot 9 \cdot 8=11,232,000
$$

(3) (a) There are 5 letters se there are $5!=120$ permutations.

There are $3 \cdot 2 \cdot 1=6$ possible permutations.
Here is the choice tree:

$$
\begin{aligned}
& \underline{a} \underline{b} \underline{d}-c-\underline{a} b \underline{d} \underline{e} \leq \\
& \underline{a} \underline{b}--\frac{c}{a}\left\{\begin{array}{l}
\underline{a} \underline{b} \underline{e}-c
\end{array} \quad \underline{a} b \underline{e} d \leq\right. \\
& \text { a } d \underline{b}-c-a \underline{d} \underline{b} \underline{e} c \\
& \underline{a} d \underline{e}-c \text { a } \underline{d} \underline{e} b \leq \\
& \underline{a} e \underline{b}-c-a \underline{e} \underline{b} \underline{d} \underline{c} \\
& \text { a } \underline{e} d \underline{b} \text { c }
\end{aligned}
$$

（4）You need to put 5 dashes and 3 dots into $5+3=8$ spots．
The number of possible messages of this type can be calculated by picking the 5 spots amongst the 8 total spots where the dashes go．
This can be done in

$$
\begin{aligned}
& \text { This can be done in } \\
& \binom{8}{5}=\frac{8!}{3!5!}=\frac{8 \cdot 7 \cdot 6 \cdot 5!}{66 \cdot 8!}=56 \text { ways. }
\end{aligned}
$$

Example：ニーニニーニーニ
Since the other spots have to be dots there is only one possible way to fill in the remaining spots with dots．
Thus，the answer is

$$
56 \cdot 1=56 \text { possible messages }
$$

(5) (a) Some examples are

$$
\begin{aligned}
& 01121120 \\
& 11111111 \\
& 12000121
\end{aligned}
$$

Let's count!

$$
\left.\begin{array}{ccccccc}
\frac{0 / 1 / 2}{\uparrow} & \frac{0 / 1 / 2}{\uparrow} \\
3 & \frac{0 / 1 / 2}{\uparrow} \\
3 & 3 & 3 & 3 & 3 & 3 & 3
\end{array}\right]
$$

There are $3 \cdot 3 \cdot 3 \cdot 3 \cdot 3 \cdot 3 \cdot 3 \cdot 3=3^{8}$

$$
=6561 \text { possible sequences }
$$

(5) (b)

Step 1:
Pick 4 spots from the 8 total spots where the 0 's g°. This can be done in $\binom{8}{4}=\frac{8!}{4!4!}$

$$
=70 \text { ways }
$$

One of the 70 ways:

$$
\underline{0} \underline{0}-\underline{0}-\underline{0}--
$$

Step 2:
Now there is no choice at this point, you must fill the remaining 4 spots with I's. Thus, only 1 possibility at this step.

The above example becomes
Answer: 00101011

Total \# of sequences

$$
\text { is } 70 \cdot 1=70
$$

(5) (c)

Step 1:
pick 3 spots from the 8 total spots to put the O's. There are

$$
\begin{aligned}
& \text { O's. } \\
& \binom{8}{3}=\frac{8!}{5!3!}=\frac{8 \cdot 7 \cdot 6 \cdot 5!}{5!8}=56
\end{aligned}
$$

ways to do this

Step 2:
Pick 3 spots from the remaining 5 spots to put the 1's in. There are

$$
\binom{5}{3}=\frac{5!}{2!3!}=\frac{5 \cdot 4 \cdot 3!}{2 \cdot 3!}=10
$$

ways to do this
Step 3: Only I choice to make now: Fill the remaining spots with 2's

Example possibility

$$
0-10-11
$$

Example possibility
02001121

Answer: Total number of sequences is $56.10 .1=560$
(6) (a) There are 13 books. Thus there are $13!=6,227,020,800$ ways to put them on the shelf

$$
\begin{array}{llllllllllll}
\bar{\uparrow} & \bar{\uparrow} \\
\hline
\end{array}
$$

（6）（b）There are 5 math books and 8 uther hooks．The math books have to be clumped together．
Step 1：Pick where the math books go． Think of the math hooks as one unit on this step
math 00000001 math THロロロロロ $\square \square$ math ロロロロロロ ロロロ（math DODDロ ロロロロ math ロロロロ ロロロロロ想年h ロロロ ロロロロロロ math Db

Step 2: Now for each of the 9 possibilities from step I you must fill the books in in every possible permutation.

$$
\begin{aligned}
& \text { math } \\
& \text { non-math } \\
& \begin{array}{llllll}
1 & 1
\end{array} \\
& \begin{array}{lll}
5 \\
\text { possibilities }
\end{array} \quad \text { Possibilines }
\end{aligned}
$$

So step 2 gives $(5!)(8!)$

$$
\begin{aligned}
& =(120)(40,320) \\
& =4,838,400 \text { ways }
\end{aligned}
$$

Thus, the total \# of ways to put the books on the shelf with the math books next to each other is

$$
\begin{aligned}
(9)(5!)(8!) & =(9)(4,838,400) \\
& =\begin{array}{l}
43,545,600 \\
\text { ways }
\end{array}
\end{aligned}
$$

(7)

There are $5+6=11$ people that can sit down in a row.

So, there are $11!=39,916,800$ ways the mathematicians and biologists can sit down.
Now we count the number of ways they can rit down with the mathematicians sitting together and the biologists sitting to gether.
Step 1: There are two passible templates.

Step 2: Now fill in the spots.

$$
\begin{array}{lllllllllll}
\hline m & m & m & m & m & B & B & B & B & B & B \\
\frac{1}{1} & \frac{2}{1} & \frac{3}{\uparrow} & \frac{4}{\uparrow} & \frac{5}{\uparrow} & \frac{1}{\uparrow} & \frac{2}{\uparrow} & \frac{3}{\uparrow} & \frac{4}{\uparrow} & \frac{5}{\uparrow} & \frac{6}{\uparrow} \\
5 & 4 & 3 & 2 & & 6 & 5 & 4 & & 2 & 1 \\
\text { Poss(lil)ines }
\end{array}
$$

This case gives $(5!)(6!)$ possibilities
OR

This case gives $(6!)(5!)$ possibilities
Adding these cases gives

$$
\begin{aligned}
(5!)(6!)+(6!)(5!) & =86,400+86,400 \\
& =172,800 \text { ways } 7
\end{aligned}
$$

Thus the probability is

$$
\begin{aligned}
\frac{172,800}{39,916,800} & \approx 0.004329 \ldots \\
& \approx 0.43 \%
\end{aligned}
$$

(8) The sample space size is $|S|=6^{6}=46,656$. Let E be the event that at least two of the dice have the same number. We want $P(E)$.
Instead we will calculate $P(E)=1-P(\bar{E})$
where \bar{E} is the event that none of the dice have the same number.

So, $P(\bar{E})=\frac{6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1}{6^{6}}=\frac{720}{46,656}$
Thus, $P(E)=1-P(\bar{E})=\frac{46,656-720}{46,656}=\frac{45,936}{46,656}$

$$
\approx 0.9845679 \ldots
$$

$$
\approx 98.46 \%
$$

(9) The sample space has size

$$
|s|=8 \cdot 8 \cdot 8 \cdot 8=8^{4}=4,096 \text {. }
$$

(a) First choose where the two 3's can go by picking two of the four spots.

$$
\binom{4}{2}=\frac{4!}{2!2!}=6
$$

Then fill in the remaining two spots with two numbers that aren't 3 's.

$$
\text { ex: } 3-\frac{3}{7} \frac{-}{7}
$$

choices choices

$$
7.7=49
$$

There are $6.49=294$ possibilities.
So, the probability is

$$
\begin{aligned}
\frac{294}{4096} & \approx 0.07178 \ldots \\
& \approx 7.18 \%
\end{aligned}
$$

(b)

$$
\begin{aligned}
P\left(\text { at most two } 8^{\prime} s\right) & =P\left(\text { no } 8^{\prime} s\right) \\
& +P(\text { exactly one } 8) \\
& +P\left(\text { exactly two } 8^{\prime} s\right)
\end{aligned}
$$

fill in the four spots with \#s that aren't 8 's

$$
=\frac{7 \cdot 7 \cdot 7 \cdot 7}{4096}
$$

choose where the one 8 goes then fill in the remaining three spots with \#s that aren't 8's

$$
+\frac{\binom{4}{1} \cdot 7 \cdot 7 \cdot 7}{4096}
$$

choose where the two 8's
Note go and then fill in the remaining

$$
\binom{4}{1}=4
$$ two spots with \#s that aren't 8's

$$
\begin{aligned}
& \quad \begin{array}{l}
\frac{\binom{4}{2} \cdot 7 \cdot 7}{4096} \\
\text { two spots with st that arent' 8's }
\end{array} \quad\binom{4}{2}=6 \\
= & \frac{2401+1372+294}{4096}=\frac{4067}{4096} \approx 0.9929 . . \\
& \approx 99.3 \%
\end{aligned}
$$

note:

$$
\binom{4}{1}=4
$$ is counting these 4 possibilities $\frac{8}{-\frac{8}{8}}=$

(c)
$P($ at least three $\mid ' s)=P($ exactly three 1 's $)$
$+P$ (exactly fore 1 's $)$
pick 3 spots out of the 4 spots for the I's. Then fill the remaining spot with 4 S that aren't 1.

$$
\begin{aligned}
&=\frac{\binom{4}{3} \cdot 7}{4096}+\frac{\binom{4}{4}}{4096} \\
&=\frac{4.7}{4096}+\frac{1}{4096}=\frac{29}{4096} \approx 0.00708 \\
& \approx 0.7 \%
\end{aligned}
$$

(10)

The sample space has size $6^{10}=60,466,176$
Now count possibilities.
example possibility at this step
Step 1: Pick where the one 4 goes.

$$
\binom{10}{1}=10 \text { possibilities }
$$

$$
---\frac{4}{\uparrow}-----
$$

example possibility at this step
Step 2: Pick where the six S^{\prime} s go.

$$
\begin{aligned}
& \text { the six } \begin{aligned}
\binom{9}{6} & =\frac{9!}{6!3!}=\frac{9 \cdot 8 \cdot 7 \cdot 6!}{6!3!} \\
& =\frac{9 \cdot 8 \cdot 7}{3!}= \\
& =84 \text { possibilities }
\end{aligned}
\end{aligned}
$$

$$
-\frac{5}{\uparrow} \frac{5}{\uparrow}-\frac{5}{\uparrow}-\frac{5}{\uparrow}-\frac{5}{\uparrow} \frac{5}{\uparrow}
$$

example possibility at this step
Step 3: Fill in the other three spots with numbers that aren't 4 or 5 .

$$
4 \cdot 4 \cdot 4=64
$$

possibilities

The probability is thus

$$
\begin{aligned}
\frac{(10)(84)(64)}{60,466,176} & =\frac{53,760}{60,466,176} \\
& \approx 0.000889 \ldots \\
& \approx 0.0889 \%
\end{aligned}
$$

(11) The sample space has size $|s|=2^{5}=32$
(a) Pick where the one head goes: $\binom{5}{1}=5$

Fill in the remaining 4 spots with tails: $1 \cdot 1 \cdot 1 \cdot 1=1$

$$
\begin{aligned}
& P(\text { exactly one head })=\frac{5 \cdot 1}{32} \\
&=\frac{5}{32} \approx 0.15625 \ldots \\
& \approx 15.69
\end{aligned}
$$

We counted these possibilities:

$\frac{H}{T}$	$\frac{T}{H}$	$\frac{T}{T}$	$\frac{T}{T}$
$\frac{T}{T}$	$\frac{T}{H}$	$\frac{T}{T}$	
I	I	T	$\frac{H}{T}$
I	I	I	I

(b) Pick where the three heads $g_{0}:\binom{5}{3}=\frac{5!}{3!2!}=10$

Fill in the remaining 2 spots with tails: $1 \cdot 1=1$

$$
\begin{aligned}
P(\text { exactly three heads }) & =\frac{10}{32} \\
& \approx 0.3125 \ldots
\end{aligned}
$$

Note: The count of 10 above counted these:

$$
\begin{array}{llll}
\frac{H}{H} & \frac{H}{H} & \frac{H}{T} & \frac{T}{T} \\
\frac{H}{H} & \frac{T}{T} & \frac{H}{H} \\
\frac{H}{H} & \frac{H}{T} & \frac{H}{T} \\
\frac{H}{T} & \frac{H}{H} & \frac{H}{H} \\
I & \frac{H}{H} \\
I & \frac{H}{H} \\
I & I & H & H \\
I & H & H
\end{array}
$$

(c) There is only I way to get all tails. It is I T T I I

So,

$$
\begin{aligned}
& \text { So, } \\
& p(\text { all tails })=\frac{1}{32} \approx 0.03125 \approx 3.125 \%
\end{aligned}
$$

(12) The sample space has size

$$
|S|=2^{20}=1,048,576
$$

(a)

$$
\begin{aligned}
& P(\text { at least } 2 \text { heads })=1-P(\text { less than } 2 \text { heads }) \\
& =1-P(\text { exactly } 0 \text { heads })-P(\text { exactly } 1 \text { head })
\end{aligned}
$$

only I way to have 0 heads. Fill all 20 spots with tails
exactly I head.
pick the spot where the head goes in $(2 i)=20$ ways. Then fill the remaining spots $\frac{\text { with tails in I way. }}{(20)}$
$=1-\frac{1}{1,048,576}-\frac{\binom{20}{1}}{1,048,576}$

$$
=\frac{1,048,576-1-20}{1,048,576}=\frac{1,048,555}{1,048,576}
$$

$$
\approx 0.99997997 \ldots
$$

$$
\approx 99.998 \%
$$

(b)

$$
\begin{aligned}
& P(\text { at most } 3 \text { heads })= P(0 \text { heads }) \\
&+P(\text { exactly } 1 \text { head }) \\
&+P(\text { exactly } 2 \text { heads }) \\
&+P(\text { exactly } 3 \text { heads }) \\
& \text { pick } 1 \text { spot pick } 2 \text { spots pick } 3 \text { spots } \\
& \text { out of } 20 \\
& \text { out of } 20 \text { for the heads }
\end{aligned}
$$ out of 20 out of 20 for the head for the heads for the heads then fill the then fill the then fill the rest with tails rest with tails rest with tails in I way in I way in I way

$$
\begin{aligned}
& =\frac{1}{2^{20}}+\frac{\binom{(20}{1}}{2^{20}}+\frac{\binom{20}{2}}{2^{20}}+\frac{\binom{20}{3}}{2^{20}} \\
& =\frac{1+20+190+1140}{1,048,576}=\frac{1,351}{1,048,576}
\end{aligned}
$$

$$
\approx 0.00128891 \approx 0.1288 \%
$$

(13) There are $6^{4}=1296$ ways to roll a 6 -sided die four times in a row.
Let E be the event that a 3 occurs at least once in the four rolls. Then \bar{E} is the event that no 3 's occur in the four rolls.

possibilities Possinitioc possibiniter possibilities
Thus, $P(\bar{E})=\frac{625}{1296} \approx 0.48$.
So, $P(E)=1-P(\bar{E})=1-\frac{625}{1296}$

$$
=\frac{671}{1296} \approx 0.52
$$

The sample space has size

$$
\begin{aligned}
|S| & =\binom{20}{5}=\frac{20!}{5!15!}=\frac{20 \cdot 19 \cdot 18 \cdot 17 \cdot 16 \cdot 15!}{5!15!} \\
& =\frac{1,860,480}{120}=15,504
\end{aligned}
$$

To count how many ways we can pick 5 numbers so the smallest number is larger than 6 we must pick S numbers from the 14 circled below.

$$
\begin{aligned}
& \text { must pick } S \text { numbers trim } \\
& 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20 \\
& 141-\frac{14!}{14 \cdot 13 \cdot 12 \cdot 11 \cdot 10} \frac{51 \cdot 9!}{l}
\end{aligned}
$$

This can be done in $\binom{14}{5}=\frac{14!}{5!9!}=\frac{14 \cdot 13 \cdot 12 \cdot 11 \cdot 10 \cdot 5!}{5!9!}$

$$
\begin{aligned}
& =\frac{5!9!}{120}=2,002 \\
& =\frac{240,240}{110}
\end{aligned}
$$

Thus the probability is

$$
\frac{2,002}{15,504} \approx 0.129 \approx 12.970
$$

(15) Recall there are

$$
\binom{47}{5} \cdot 27=41,416,353 \text { possible tickets }
$$

(a) The number of tickets that get 2 of the 5 lucky \#s correct and the mega number is
pick 2 pick 3
of the non- pining the
5 winnnig Wincky winning
lucky numbers number

$$
\begin{aligned}
\frac{\binom{5}{2} \cdot\binom{42}{3} \cdot\binom{1}{1}}{41,416,353}=\frac{(10)(11,4801}{41,416,353} & =\frac{114,800}{41,416,353} \\
& \approx 0,00277 \ldots \\
& \approx 0.277 \%
\end{aligned}
$$

(b) The number of tickets that get 4 of the 5 lucky \#s correct and the mega number is

$$
\begin{aligned}
& \text { pick } 4 \text { pick } 1 \text { pick } \\
& \text { of the non - the } \\
& 5 \text { winning winning winning } \\
& \text { lock luck mean } \\
& \frac{\binom{5}{4} \cdot\binom{42}{1} \cdot\binom{1}{1}}{41,416,353}=\frac{(5)(42)}{41,416,353}=\frac{210}{41,416,353} \\
& \approx 0.00000507 \ldots \\
& \approx 0,000507 \%
\end{aligned}
$$

(16) There are 49 remaining cards. Thus, there are $\binom{49}{2}=\frac{49!}{2!47!}=\frac{49 \cdot 48 \cdot 47!}{2!47!}=\frac{49 \cdot 48}{2}=1,176$ possible two card combinations that you can get. (a) There are $13-3=10$ remaining clubs. So, the odds of getting two clubs is

$$
\left.\frac{\binom{0}{2}}{\binom{49}{2}}=\frac{45}{1,176}\right) \approx 0.038 \ldots .
$$

(b) The cards that give you a straight are

$$
\begin{aligned}
& A^{?} 5^{\text {gives }} \text { or } \\
& 2^{9} 3^{9} 4^{9} 5^{?}
\end{aligned}
$$

\square

where? is any suit except you don't want to court $A^{9} 5^{9}$ or $5^{C^{9}} 6^{9}$ since those would give you a straight flush.

Thus, the number of hands that give you a straight but not a straight flush is

$$
4.4+4.4-2=30
$$

$$
A^{?} 5^{?}
$$

So, the probability is $\frac{30}{1,176}$ $\approx 0,02551$

$$
\approx 2.551 \%
$$

(c) The cards that give you a straight flush are $A^{9} 5^{9}$ and $5^{9} 6^{9}$. Thus, the probability is $\frac{2}{1,176} \approx 0.0017 \ldots 0.17 \%$

17
There are $\binom{52}{2}=\frac{52!}{2!50!}=\frac{52.51}{2}=1326$ ways to be dealt two cards.
(a) There are four aces: $A^{\top}, A^{(}, A^{(}, A$ Thus there are $\binom{4}{2}$ possible ways to be dealt two aces.

$$
\binom{4}{2}=\frac{4!}{2!2!}=\frac{4 \cdot 3 \cdot 2 \cdot 1}{2 \cdot 1 \cdot 2 \cdot 1}=6
$$

Thus the probability of such an event is

$$
\begin{array}{r}
\frac{\binom{4}{2}}{\binom{s 2}{2}}=\frac{6}{1326} \approx 0.00452489 \ldots \\
00 \approx 0.45 \%
\end{array}
$$

(b)

There are 13 possible face values:

$$
A, 2,3,4,5,6,7,8,9,10, J, Q, K
$$

Each face value has 4 suits.
Thus, there are

$$
\begin{aligned}
& \text { hus, there are } \\
& \underbrace{13 \cdot\binom{4}{2}}_{\begin{array}{c}
\text { choose } \\
\text { the the } \\
\text { choose of the } \\
\text { t calve } \\
\text { vars }
\end{array}}=13 \cdot \frac{4!}{2!2!}=13 \cdot 6=78
\end{aligned}
$$

The flue
t cards
choose
foo
ways to get two cards of the same
Thus, the probability of such an face value. event is

$$
\begin{aligned}
& \text { event is } \\
& \frac{13 \cdot\binom{4}{2}}{\binom{s_{2}}{2}}=\frac{78}{1326} \approx 0.5882 \ldots \\
& \text { or } \approx 5.88 \%
\end{aligned}
$$

(c) How many blackjacks are there?

There are 4 aces:

$$
A^{P}, A^{\diamond}, A^{9}, A P
$$

There are 16 tens, jacks, queens, kings:

$$
\begin{aligned}
& 10^{8}, 10^{0}, 10^{9}, 109 \\
& \text { [易, }, J^{\infty}, ~ J P \\
& \text { QQ, } Q^{0}, Q^{9}, Q 9 \\
& k^{P}, k^{0}, k^{P}, k^{P}
\end{aligned}
$$

Thus, the probability of being dealt a blackjack is $\frac{64}{\binom{s 2}{2}}=\frac{64}{1326} \approx 0.048 \ldots$

$$
\approx 4.8 \%
$$

(18) Recall from class that there are

$$
\binom{52}{5}=2,598,960
$$

possible 5-card poker hands.
(a) we need to count the number of flushes.

Step 1: Pick the suit.

$$
\begin{aligned}
& \text { dep 1: Pick the suit. } \\
& \text { Q, } \\
& ?^{8} ?^{8} \text { ? } ?^{8} \text { say we } \\
& \text { pick this one }
\end{aligned}
$$

Step 2: Pick 5 face values

$$
\begin{aligned}
& 2^{8} 5^{8}\left[\begin{array}{c}
8 \\
6^{8}
\end{array} c^{98} \in\left(\begin{array}{c}
\text { aft } \\
\text { step } \\
2
\end{array}\right)=1287\right. \\
& \text { possibilities }
\end{aligned}
$$

So, \# flushes is $4 \cdot 1287=5148$.
Thus, the probability of getting a flush is

$$
\begin{aligned}
\frac{5148}{2,598,960} & \approx 0.00198 \ldots \\
& \approx 0.198 \%
\end{aligned}
$$

(b) Let's count the \# of three of a kinds.

Step 1: Pick the face value for the three of n kind.

$$
\begin{aligned}
& \text { Step } 1 \text { : Pick the kind. } \\
& \text { the three of a k, } \\
& A, 2,4,5,6,7,8,9,10, J, Q, k \leftrightarrow\binom{13}{1}=13 \\
& \text { say we }
\end{aligned}
$$

say we
picked 5
$5^{?}$? $5^{?}$?? ?? after step 1

Step 2: Pick the suits for the three of n kind.

$$
\text { the three of n kind. }\binom{4}{3}=\frac{4!}{3!!!}=4
$$

say we picked these three

$$
5^{\text {9. }} 5^{\text {Say }} \text { we picked } 5^{\text {P }} \text { ? ? ? ? after step 2 }
$$

Step 3: Pick the face values for the non-three of a kind part

$$
\begin{aligned}
& \text { Step 3: Pick the face value) } \\
& \text { for the non-three of a kind part } \\
& \text { A, 2, } 3,4,4,6,7,(8), 9,10, J, Q, K \leftarrow\binom{12}{2}=66
\end{aligned}
$$

$$
5^{9} \text { say we picked these } 5^{9} 5^{9} 2^{?} 8^{?} \leftarrow \text { after step } 3
$$

Step 4: Pick the suits for
the non-three of a kind part

$$
\begin{aligned}
& \text { the non- three of a kind part } \\
& Q, \otimes, 9, Q^{4} \leftarrow\binom{4}{1}=4 \\
& (8) \nabla, 9, \infty \\
& \hline
\end{aligned}
$$

(say we picked

$$
5^{\text {a }} 5^{\text {P }} 5^{\text {(say }} 2^{8} 8^{0} \leftarrow \text { after step } 4
$$

Combining all 4 stans gives

$$
13 \cdot 4 \cdot 66 \cdot 4 \cdot 4=54,912
$$

three of a kinds.
Thus, the probability of getting a three of a kind is

$$
\begin{aligned}
\frac{54,912}{2,598,960} & \approx 0.0211 \ldots \\
& \approx 2.11 \%
\end{aligned}
$$

(19)

$$
\begin{aligned}
& S=\{(H, 1),(H, 2),(H, 3),(H, 4) \text {, } \\
& (T, 1),(T, 2),(T, 3),(T, Y)\}
\end{aligned}
$$

Ω is the set of all subsets of S

$$
\begin{array}{ll}
P(H, 1)=\frac{1}{2} \cdot \frac{1}{8}=\frac{1}{16} & P(T, 1)=\frac{1}{2} \cdot \frac{1}{8}=\frac{1}{16} \\
P(H, 2)=\frac{1}{2} \cdot \frac{2}{8}=\frac{2}{16} & P(T, 2)=\frac{1}{2} \cdot \frac{2}{8}=\frac{2}{16} \\
P(H, 3)=\frac{1}{2} \cdot \frac{3}{8}=\frac{3}{16} & P(T, 3)=\frac{1}{2} \cdot \frac{3}{8}=\frac{3}{16} \\
P(H, 4)=\frac{1}{2} \cdot \frac{2}{8}=\frac{2}{16} & P(T, 4)=\frac{1}{2} \cdot \frac{2}{8}=\frac{2}{16}
\end{array}
$$

(20)

$$
\begin{array}{r}
S=\{(H, 1),(H, 2),(H, 3),(H, 4), \\
(T, 1),(T, 2),(T, 3),(T, 4)\}
\end{array}
$$

Ω is the set of all subsets of S

$$
\begin{array}{ll}
P(H, 1)=\frac{7}{10} \cdot \frac{1}{8}=\frac{7}{80} & P(T, 1)=\frac{3}{10} \cdot \frac{1}{8}=\frac{3}{80} \\
P(H, 2)=\frac{7}{10} \cdot \frac{2}{8}=\frac{14}{80} & P(T, 2)=\frac{3}{10} \cdot \frac{2}{8}=\frac{6}{80} \\
P(H, 3)=\frac{7}{10} \cdot \frac{3}{8}=\frac{21}{80} & P(T, 3)=\frac{3}{10} \cdot \frac{3}{8}=\frac{9}{80} \\
P(H, 4)=\frac{7}{10} \cdot \frac{2}{8}=\frac{14}{80} & P(T, 4)=\frac{3}{10} \cdot \frac{2}{8}=\frac{6}{80}
\end{array}
$$

