Math 4740

$$
9 / 6 / 23
$$

Ex: Suppose you have six-sided die with sides labelled 1,2,3,4,5,6.
But through experimentation you realize that each outcome is not equally likely. You estimate the following probabilities.

outcome	probability
1	$2 / 8$
2	$1 / 8$
3	$1 / 8$
4	$1 / 16$
5	$1 / 16$
6	$3 / 8$

Note:

$$
\begin{array}{r}
\frac{2}{8}+\frac{1}{8}+\frac{1}{8}+\frac{1}{16}+\frac{1}{16}+\frac{3}{8} \\
=1
\end{array}
$$

Let's make a probability space.

$$
\begin{aligned}
& S=\{1,2,3,4,5,6\} \\
& \Omega=\{\text { all subsets of } S\}
\end{aligned}
$$

$$
\begin{aligned}
= & \{\phi,\{1\},\{2\}, \ldots,\{6\},\{1,2\}, \\
& \{1,6\}, \ldots,\{2,3,5\}, \ldots 0\}
\end{aligned}
$$

Make a probability function

$$
P: \Omega \rightarrow \mathbb{R}
$$

Define

$$
\begin{array}{lll}
\text { efine } \\
P(\{1\})=2 / 8 & P(\{3\})=1 / 8 & P(\{5\})=1 / 16 \\
P(\{2\})=1 / 8 & P(\{4\})=1 / 16 & P(\{6\})=3 / 8
\end{array}
$$

If E is an event from Ω define

$$
P(E)=\sum_{w \in E} P(\{w\})
$$

For example,

$$
\begin{aligned}
& \text { or example, } \\
& \begin{aligned}
P(\{2,4,6\})=P(\{2\})+P(\{4\}) & +P(\{6\}) \\
\begin{aligned}
\text { probability of rolling } \\
\text { an even number }
\end{aligned} & \frac{1}{8}+\frac{1}{16}
\end{aligned}+\frac{3}{8}=\frac{9}{16} \\
&
\end{aligned}
$$

And

$$
\begin{aligned}
& P(\{1,2,3,4,5\})=P(\{,\})+P(\{2\})+P(\{3\}) \\
& +P(\{4\})+P(\{5\}) \\
& \text { probability of } \\
& \text { not getting a } 6 \\
& =\frac{2}{8}+\frac{1}{8}+\frac{1}{8}+\frac{1}{16}+\frac{1}{16} \\
& =\frac{5}{8} \approx 0.625 \approx 62.5 \%
\end{aligned}
$$

Note: Suppose (S, Ω, P) is a probability space and S is finite.
Suppose each outcome w in S is equally likely, that is $P(\{\omega\})=\frac{1}{|S|}$ for all ω in S.
In this case if E is an event with n elements, say

$$
E^{n}=\left\{w_{1}, w_{2}, \ldots, w_{n}\right\}
$$

$$
\begin{aligned}
& \text { then } \\
& \begin{aligned}
P(E) & =P\left(\left\{\omega_{1}\right\}\right)+P\left(\left\{\omega_{2}\right\}\right)+\cdots+P\left(\left\{\omega_{n}\right\}\right) \\
& =\frac{1}{|s|}+\frac{1}{|s|}+\cdots+\frac{1}{|s|} \\
& =\frac{n}{|s|}=\frac{|E|}{|s|} \cdot \begin{array}{l}
\text { formula holds } \\
\text { only when } \\
\text { each outcome } \\
\text { is equally } \\
\text { likely }
\end{array}
\end{aligned} \\
& \text { So, } P(E)=\frac{|E|}{|s|}
\end{aligned}
$$

Ex: Suppose we do the experiment where we roll two 6-sided dice. These are normal dice, each side is equally likely.
$(a, b) \leftarrow$ represents a on die b on die 2

$$
\begin{aligned}
& S=\{(1,1),(1,2),(1,3),(1,4),(1,5),(1,6), \\
&(2,1),(2,2),(2,3),(2,4),(2,5),(2,6), \\
&(3,1),(3,2),(3,3),(3,4),(3,5),(3,6), \\
&(4,1),(4,21,(4,3),(4,4),(4,5),(4,6), \\
&(5,1),(5,2),(5,3),(5,4),(5,5),(5,6), \\
&(6,1),(6,2),(6,3),(6,4),(6,5),(6,6)\} \\
& \Omega=\{\text { all subsets of } 5\} \\
&|S|=36 \\
& P\{(a, b)\})=\frac{1}{|S|}=\frac{1}{36}
\end{aligned}
$$

For example, $P(\{(1,5)\})=\frac{1}{36}$

$$
\text { die } 1=1_{4}^{\text {die } 2=5}
$$

Question: What is the probability that the sum of dice is 7 ?

Let E be the event that the sum of the dice is 7 .

Then,

$$
E=\{(1,6),(2,5),(3,4),(4,3),(5,2),(6,1)\}
$$

Since all outcomes are equally weighted,

$$
\begin{aligned}
P(E)=\frac{|E|}{|S|}=\frac{6}{36}=\frac{1}{6} & \approx 0.166 \\
& \approx 16.6 \%
\end{aligned}
$$

Note: You can construct a probability space when S is countably infinite, that is S is infinite and you can list the elements. Suppose

$$
S=\left\{w_{1}, w_{2}, w_{3}, w_{4}, w_{5}, \ldots\right\}
$$

Let Ω be the set of all subsets of S.
Define $P\left(\left\{w_{i}\right\}\right)$ for each i
So that $0 \leq P\left(\left\{\omega_{i}\right\}\right) \leq 1$ and

$$
\sum_{i=1}^{\infty} P\left(\left\{w_{i}\right\}\right)=1
$$

If E is an event, define

$$
P(E)=\sum_{w \in E} P(\{\omega\})
$$

Theorem: This will be a probability space.

Theorem: Let (S, Ω, P) be a probability space.
Let E and F be events.
Then:
(1) $P(\bar{E})=1-P(E)$

(2) If $E \subseteq F$, then $P(E) \leq P(F)$

(3)

$$
P(E \cup F)=P(E)+P(F)-P(E \cap F)
$$

(4) If E and F are disjoint, that is $E \cap F=\phi$, then

$$
P(E \cup F)=P(E)+P(F)
$$

Proof: See $2-7-22$ notes from Spring 22.

Ex: Suppose we roll two 12 -sided dice. Each die has $1,2,3,4,5,6,7,8,9,10,11,12$ un it and are equally likely.
What is the probability that at least une of the dice is $4,5,6,7,8,9,10,11$, or 12 ? Ex:

die	die 2
3	3
2	7
	neither die at least at one die

Sample space:

$$
\begin{aligned}
S & =\left\{(a, b) \left\lvert\, \begin{array}{ll}
a=1,2,3, \ldots, 12 \\
b=1,2,3, \ldots, 12
\end{array}\right.\right\} \\
& =\{(1,1),(5,12),(3,4), \ldots\}
\end{aligned}
$$

Then, $\quad|S|=12 \cdot 12=144$
Let E be the event that at least one die is a

$$
4,5,6,7,8,9,10,11,12
$$

So,

$$
E=\{(6,12),(4,5),(4,10), \ldots\}
$$

too many to count!

Instead we count \bar{E}.
We have
E is the event that none of the die are $4,5, \ldots, 12$.
So,

$$
\begin{gathered}
\bar{E}=\{(1,1),(1,2),(1,3),(2,1),(2,2), \\
(2,31,(3,1),(3,2),(3,3)\}
\end{gathered}
$$

$$
\begin{aligned}
& \text { Then, } \\
& P(\bar{E})=\frac{|\bar{E}|}{|S|}=\frac{9}{144}=\frac{1}{16}
\end{aligned}
$$

Thus from the previous theorem

$$
\begin{aligned}
P(E)=1-P(\bar{E}) & =1-\frac{1}{16} \\
& =\frac{15}{16} \approx 0.9375
\end{aligned}
$$

