Math 4740

$$
9 / 27 / 23
$$

Montey Hall problem

- See Numberphile video and 21 video from website first.
- Suppose you always start by picking door \#1.
Then Montey Hall reveals a goat behind either door 2 or door 3. Then asks if you want to switch or sty on door 1. What de you do?

Table of possibilities

door	door I	door 3	Stay w/ door 1 strategy	Switch from dor 1 Strategy
car	goat	goat	WIN	LOSE
goat	car	goat	LOSE	WIN
gout	goat	car	LOSE	WIN

1
always starting with door 1 as first choice
:---:
staying
you
win
$1 / 3$
the time
:---:
you
win
$2 / 3$
of
the
time

You should always switch!

Topic 3-Conditional Probability

Ex: Suppose we roll two 6-sided dice, a green die and a red die. Suppose the green die stops rolling and lands on a 3, but the red die keeps rolling.
What's the probability that the SUM of the dice is 8 ?

So, the probability is $1 / 6$.

Let's make a formula for this without having to shrink the sample space S and also a method that generalizes even to spaces where the outcomes are not equally likely.
Let $E=$ the event in 5 where the sum of the dice is 8.
Let $F=S^{\prime}=\begin{aligned} & \text { the event in } S \\ & \text { where the green } \\ & \text { die is } 3 .\end{aligned}$
we want to know the "conditional probability" of the event E occuring given that F has "already occured."

Defil Let (S, Ω, P) be a probability space. Let E and F be two events.
Suppose $P(F)>0$.
Define the conditional probability that E occurs given that F occured to be

$$
\begin{aligned}
& \text { occured to be } \\
& P(E \mid F)=\frac{P(E \cap F)}{P(F)}
\end{aligned}
$$

these probabilities are calculated in S

Ex: (HW 3 \#3 modified)
Suppose you coll two 8 -sided dice. You can't see the outcome, but your friend can. They tell you that the sum of the dice is divisible by 5 . What is the probability that both dice have landed on 5 ?

$$
\begin{aligned}
& S=\{(a, b) \mid a, b=1,2, \ldots, 8\} \\
& |S|=8^{2}=64 \\
& F=\{(a, b) \mid a+b \text { is divisible by } 5\} \\
& E=\{(5,5)\} \\
& \text { Want: } P(E \mid F)=\frac{P(E \cap F \mid}{P(F)}
\end{aligned}
$$

We have

$$
F=\{
$$

