Math 4740) 9-20-23

Ex: Suppose you are dealt 5 cards from a standard 52-card deck. What's the probability that you get a royal flush?

The size of the sample space, ie the total # of possible 5-cand poken hands is $\binom{52}{5} = 2,598,960$ many royal flushes How are there? 107 JA QA KA AA

Exi Same setup as above, What's the probability of getting one pair and Nothing better P

Sample space size:
$$\binom{52}{5} = 2,598,960$$

we need to count the

$$#$$
 of hands that make
a pair and nothing
better.
 $A, 2, 3, 4, 5, 6, 7, 8, 9, 10, 5, 0, K$ value
 $A = 0$ $K = 0$

Let's enumerate the pairs.

Step 1: Pick a face value for the pair. A (2), 3, 4, 5, 6, 7, 8, 9, 10, J, Q, K Possibilities in step 1: $\begin{pmatrix} 13 \\ 1 \end{pmatrix} = 13$ EX: ZZ Step 2: Pick 2 suits for the pair $(\mathcal{P}, \mathcal{P}, \mathcal{Q}, \mathcal{O})$ Possibilities in step 2: (4)=6

 2° 2°

Step 3: Pick the other 3 face Values. They can't be the same as step 1, and you can't pick any duplicates. A, X, 3, 4, 5, 6, 7, 8, 9, 10, J, Q, K Possibilities in step 3: $(12) = \frac{12!}{3!(12-3)!} = 220$

Step 4: Fill in the 3
remaining suits.
possibilities
in step 4
=
$$(4) \cdot (4) \cdot (4)$$

= 4.4.4=64

= |1,098,240|

Ju the probability is 1,098,2402,598,960~ 0.422569 ... $\approx |422$

The sample space size is the total # of 2-card hands. It is

Or Use choosing.
pick 2 from:

$$A^{Y}A^{A}A^{P}A^{P}A^{P}$$

 $\binom{4}{2} = \frac{4!}{2!(4-2)!} = \frac{4\cdot3\cdot2\cdot1}{2\cdot2} = 6$
the probability of getting
the cores is

$$\frac{6}{1326} = \frac{1}{221} \approx 0.00452...$$

 $\frac{20.4529}{20.4529}$

(b) Need to count the # of hands with both cards same fuce value. Step 1: Pick the face value A, 2, 3, 4, 5, 6(7), 8, 9, 10, J, Q, K # possibilities in step $\left| : \begin{pmatrix} 13 \\ 1 \end{pmatrix} \right| = \left| 3 \right|$

Step 2: Pick two suits $P(P), \nabla (C)$

possibilities in step $2! \begin{pmatrix} 4 \\ 2 \end{pmatrix} = 6$ [X:] [77] [72]# of hands with same face Value on both cands is 13.6 = 78

Probability is

Step 1 Step 2

 $\frac{78}{1326} = \frac{1}{17}$ 78

 ≈ 0.0588 ~ 5,887.