Math 4740

$$
9-20-23
$$

Ex 5-card poker hands:

$$
\begin{aligned}
& \frac{2^{9}}{T} 3^{4} 4^{\square} A^{\Delta} \leftarrow \text { pair }
\end{aligned}
$$

$$
\begin{aligned}
& 3^{p} 3^{P} 2^{Q} 2^{\square} 2^{P} \leftarrow \text { full }
\end{aligned}
$$

$$
\begin{aligned}
& \text { same as: } \\
& A^{9} 2^{87} 3^{9} 4^{3 P} 5^{8}
\end{aligned}
$$

Ex: Suppose you are dealt 5 cards from a standard 52-card deck.
What's the probability that you get a royal flush?

The size of the sample space, ie the total $\#$ of possible 5 -card poker hands is

$$
\binom{52}{5}=2,598,960
$$

How many royal flushes are there?
$10^{\uparrow} J^{\uparrow} Q^{\uparrow} k^{\uparrow}$

The probability of a royal flush is

$$
\begin{aligned}
\frac{4}{2,598,960} & =\frac{1}{649,740} \\
& \approx 0.000001539 \ldots \\
& \approx 0.0001539 \%
\end{aligned}
$$

Ex: Same setup as above, What's the probability of getting one pair and nothing better?

Sample space size:

$$
\binom{52}{5}=2,598,960
$$

we need to count the \# of hands that make a pair and nothing

$$
\begin{aligned}
& \text { better. } \\
& A, 2,3,4,5,6,7,8,9,10,5, Q, K \text { trvalue } \\
& \uparrow, T, D, \Delta \leftarrow \text { shit }
\end{aligned}
$$

Let's enumerate the pairs.
Step 1: Pick a face value for the pair.

$$
\begin{aligned}
& \text { A, 2, } 3,4,5,6,7,8,9,10, J, Q, k \\
& \text { possibilities in step } 1:\binom{13}{1}=13
\end{aligned}
$$

\square
\square
\square

Step 2: Pick 2 suits for the pair

$$
(9,9, \Delta, Q
$$

Possibilities in step 2: $\binom{4}{2}=6$

Step 3:) Pick the other 3 face values. They can't be the same as step 1, and you can't pick any duplicates.

$$
\begin{aligned}
& \text { can't pick any duplicates. } \\
& A, 2,3,4,(5), 6,7,8,9,10, J, Q, K \\
& \text { A }
\end{aligned}
$$

possibilities in step $3:\binom{12}{3}=\frac{12!}{3!(12-3)!}=220$
Ex:
2^{p}

Step 4: Fill in the 3

$$
\begin{array}{|l|l}
\hline \text { remaining } & \text { suits. } \\
\hline \begin{array}{l}
\text { \# possibilities } \\
\text { in step } \\
=\binom{4}{4} \cdot\binom{4}{1} \cdot\left(\begin{array}{l}
4 \\
=4.4
\end{array}\right. \\
=4
\end{array} \\
\hline
\end{array}
$$

$$
\text { 29 } 2^{0}
$$

\square
\square

Thus, the total \# of hands that are a pair and no better are $\frac{13}{\frac{13}{\operatorname{step} 1}} \cdot \frac{6}{\operatorname{sta} 2}: \underbrace{220}_{\operatorname{sta} 3} \cdot \underbrace{64}_{\operatorname{sta} 4}$

$$
=1,098,240
$$

So the probability is

$$
\begin{aligned}
\frac{1,098,240}{2,598,960} & \approx 0.422569 \ldots \\
& \approx 42 \%
\end{aligned}
$$

HW 2 - Extra problems
(1) Suppose you are dealt 2 cards from a standard 52 -card deck.
(a) What's the probability that both cards are aces?
(b) What's the probability both cards have the same face value (or rank)?

The sample space size is the total \# of 2 -card hands. It is

$$
\begin{aligned}
\binom{52}{2}=\frac{52!}{2!(52-2)!} & =\frac{52 \cdot 51 \cdot(50!)}{2 \cdot(50!!} \\
& =26 \cdot 51 \\
& =1326
\end{aligned}
$$

(a) How many hands have two aces?

or use choosing. pick 2 from:

$$
\binom{4}{2}=\frac{4!}{2!(4-2)!}=\frac{4 \cdot 3 \cdot 2 \cdot 1}{2 \cdot 2}=6
$$

the probability of getting two aces is

$$
\begin{aligned}
\frac{6}{1326}=\frac{1}{221} & \approx 0.00452 \ldots \\
& \approx 0.452 \%
\end{aligned}
$$

(b) Need to count the \# of hands with both curds same face value.

Step 1: Pick the face value $A, 2,3,4,5,6,7,8,9,10, J, Q, k$ \# possibilities in $\operatorname{step} 1:\binom{13}{1}=13$

Step 2: Pick two suits

$$
9,(5), \square, \infty
$$

\# possibilities in step 2! $\binom{4}{2}=6$ Ex: $7 M, 7 \Delta$
\# of hands with same face value on both cards is

$$
\underbrace{13}_{\operatorname{step} 1} \cdot \underbrace{6}_{\operatorname{step} 2}=78
$$

probability is $\frac{78}{1326}=\frac{1}{17}$

$$
\begin{aligned}
& \approx 0.0588 \\
& \approx 5.88 \%
\end{aligned}
$$

