Math 4740 $9 / 18 / 23$

Test 1 moved to Monday $10 / 9$

CA Superlotto Plus
A ticket consists of:

- 5 "lucky" numbers chosen from 1-47
- 1 "mega" number chosen from 1-27
- No repeats in the lucky numbers.

But the mega number can be the same as a lucky number.

- Order of lucky \#s doesn't matter. It's always in numerical order un the ticket.
Example tickets:

$$
\underbrace{(1)(2)(3)}_{\text {lucky \#s }} \underbrace{(6)}_{\text {mega } \#} \in \begin{aligned}
& \text { ex } \\
& \text { ticket } \\
& \# 2
\end{aligned}
$$

How many possible tickets are there? If you want to think of a sample space of all possible tickets:

$$
\begin{aligned}
& S=\{\underbrace{(\{7,13,18,23,40\}, 23)}_{\text {ticket } 1}, g \\
& \underbrace{(\{1,2,3,4,5\}, 6)}_{\text {ticket } 2}, \ldots \uparrow_{\substack{\text { tickets } \\
\text { more }}}^{\substack{\text { mors }}}
\end{aligned}
$$

How many possible tickets $?_{0}$

$$
\binom{47}{5} \cdot\binom{27}{1}
$$

\# of ways \# ways to pick 5 to pick lucky \#s 1 mega \# from 1-47 from 1-27

$$
\begin{aligned}
&=\frac{47!}{5!(47-5)!} \cdot 27 \\
&=\frac{47!}{5!42!} \cdot 27
\end{aligned}
$$

Fact:

$$
\frac{\text { Fact: }}{\binom{n}{1}}=\frac{n!}{1!(n-1)!}=\frac{n \cdot(n-1)!}{(n-1)!}=n
$$

That is, $8!=8[7!]$

$$
\binom{n}{1}=n
$$

$$
\begin{aligned}
& =\frac{47 \cdot 46 \cdot 45 \cdot 44.43 \cdot(42!)}{(5 \cdot 4 \cdot 3 \cdot 3 \cdot 1)(42!)} \cdot 27 \\
& =47 \cdot 23 \cdot 3 \cdot 11.43 \cdot 27 \\
& =41,416,353 \text { possible tickets }
\end{aligned}
$$

Q: What is the probability that if you buy one ticket you will get the 5 lucky \#s correct and the mega \# correct?
$A_{i} \frac{1}{41,416,353} \approx 0,00000002414 \ldots$
$\approx 0.000002414 \%$
is the probability
Q: What are the odds of getting exactly 3 of the 5 lucky \#S and not the mega \#?
\#'s drawn by the magical lottery machine
$\underbrace{(3)(12)(41)(42)}_{\text {lucky } \# 5} \underbrace{(17)}_{\text {mega }}$
How many tickets will get exactly 3 of the 5 lucky \#s and not the mega?

$$
\binom{5}{3} \cdot \underbrace{\binom{42}{2}} \cdot \underbrace{\binom{26}{1}}_{\text {not picking }}=
$$

choose 3 of choose 2 not picking the 5 winning non-wianing Winning

lucky \#S	lucky \#S	mega 7
Ex: $3,15,42$	1,7	1
$12,41,42$	43,45	12
\vdots	\vdots	\vdots

$$
\begin{aligned}
& \frac{5!}{3!(5-3)!} \cdot \frac{42!}{2!(42-2)!} \cdot 26 \\
= & \frac{5!}{3!2!} \cdot \frac{42!}{2!40!} \cdot 26 \\
= & \frac{120}{(6)(2)} \cdot \frac{42 \cdot 41 \cdot(40!)}{(2)(40!)} \cdot 26 \\
= & (10)(861)(26) \\
= & 223,860 \text { tickets }
\end{aligned}
$$

$$
\begin{aligned}
\text { probability } & =\frac{223,860}{41,416,353} \\
& \approx 0.00540511 \ldots \\
& \approx 0.540511 \%
\end{aligned}
$$

lottery website says the probability is

$$
\frac{1}{185} \approx 0.00540541 \ldots
$$

Ex: Suppose five 6 -sided dice are rolled. What is the probability that exactly two of the dice have 6's showing ?

$\frac{\text { Sample space size: }}{6} 66$
 $\overline{\text { die } 1} \overline{\text { die } 2}$ die 3 die 4 die 5

$$
\begin{aligned}
=6 \cdot 6 \cdot 6 \cdot 6 \cdot 6 & =6^{5} \\
& =7,776
\end{aligned}
$$

How many rolls have exactly two 6's?
Step 1: Choose two of the dice to yet the two 6's.
There are $\binom{5}{2}=10$ ways to do

$$
\frac{6}{\operatorname{die}} \frac{6}{\operatorname{die} 2} \frac{}{\operatorname{die} 3} \frac{}{\operatorname{die} 4} \frac{\operatorname{die}}{}
$$

Step 2: Fill in the non-6's.

There are 5^{3} ways to do this.

Step 1: $\binom{5}{2}=10$ possibilities $\quad \begin{gathered}\text { Step 2: } \\ 5^{3}\end{gathered}$

Answer:

$$
\begin{aligned}
& \frac{10.5^{3}}{7,776} \\
\approx & 0.16075 \ldots \\
\approx & 16 \%
\end{aligned}
$$

chance you yet exactly two 6's.

