Math 4740

$$
9 / 11 / 23
$$

Topic 2 -Counting and probability

Basic counting principle
If r experiments ace performed in a row such that the first experiment may result in n_{1} possible outcomes; and if for each of these n, possible outcomes there are n_{2} possible outcomes for the second experiment; and if for each of the possible outcomes of the first two experiments there are n_{3} possible outcomes of the
third experiment j and if, .00 , then there are

$$
n_{1} \cdot n_{2} \cdot n_{3} \cdots n_{r}
$$

possible outcomes for the r experiments.

Ex: Suppose we toss a coin and then roll a 4-sided die How many possible outcomes

Another way to write:

Ex: In California, a license plate consists of one number $(0,1,2,3,4,5,6,7,8,0,9)$ followed by three upper-case letters, followed by three numbers. The only exclusion is that the letters I, O, and Q are not used in spot 2 and spot 4.

Examples are:

$$
\begin{aligned}
& 5 K A I-\frac{2}{2} \\
& 3 A B A
\end{aligned}
$$

How many possible license plates are there?

Total \# of possible license plates is

$$
\begin{aligned}
& 10 \cdot 23 \cdot 26 \cdot 23 \cdot 10 \cdot 10 \cdot 10 \\
& =137,540,000
\end{aligned}
$$

Birthday Paradox
Suppose there are N people in a classroom. What are the odds (probability) that there are at least two people with the same birthday? (This means month \& day, not necessarily year. Such as at least two people bock on $9 / 4$)
Assumptions:
(1) We will assume that no one has a Feb 29
leap year birthday.
(2) We will assume that each day is equally likely
(3) Assume $N \leqslant 365$ because if $N>365$ then the probability is 100%

Let's figure out the sample space.
What if $N=3$?

$$
\begin{aligned}
& \text { What if } N=3: \\
& S=\left\{(\text { date 1, date 2, date 3) }) \left\lvert\, \begin{array}{l}
\text { date } i \\
\text { is a } \\
\text { calender } \\
\text { day }
\end{array}\right.\right.
\end{aligned}
$$

$$
\begin{aligned}
& =\{(\underbrace{\text { April } 1}_{\text {student 1 }}, \underbrace{\text { May } 10}_{\text {student } 2}, \underbrace{\text { Feb } 3}_{\text {student }})\}
\end{aligned}
$$

$$
\begin{aligned}
& \ldots\}
\end{aligned}
$$

Then,

$$
\begin{aligned}
|S| & =365 \cdot 365 \cdot 365 \\
& =(365)^{3}
\end{aligned}
$$

For general N, the size of the sample space is $(365)^{\mathrm{N}}$

365
possibilities
student 1
:---
possibilities
student 2

Let E be the event that there are at least two people with the same birthday. This is too hard to count. So instead we count E which is the event that no one has the same birthday Let's count the size of \bar{E}

So,

$$
|E|=\underbrace{365 \cdot 364 \cdot 363 \cdots(365-(N-1))}_{\frac{365!}{(365-N)!} *\left(\begin{array}{c}
\text { will get } \\
\text { tots } \\
\text { late' }
\end{array}\right)}
$$

Thus,
tho last week)

$$
\begin{aligned}
& P(E) \stackrel{\swarrow}{=} \mid-P(\bar{E}) \\
& \begin{array}{l}
\text { our } \\
\text { goal }
\end{array}=\left\lvert\,-\frac{|\bar{E}|}{|S|}\right.
\end{aligned}
$$

$$
=1-\frac{365 \cdot 364.363 \cdots(365-N+1)}{(365)^{N}}
$$

When $N=3$ you yet

$$
\begin{aligned}
P(E) & =1-\frac{365.364 .363}{(365)^{3}} \\
& \approx 0.0082 \approx 0.82 \%
\end{aligned}
$$

N	$P(E)$
1	0%
2	0.274%
3	0.82%
4	1.64%

5	$2,71 \%$
\vdots	\vdots
10	11.7%
\vdots	
18	34.7%
\vdots	
24	53.83%
\vdots	
40	89.12%
\vdots	
50	97.04%

Permutations
Suppose you have n objects. A permutation of those
n objects is an ordered list of the n objects.

Ex: What are all the permutations of a, b, c ?
permutations: another way:

$$
\begin{aligned}
& a b c \longleftarrow(a, b, c) \\
& a c b \longleftarrow(a, c, b) \\
& b a \subset \in(b, a, c) \\
& b<a<(b, c, a) \\
& c a b \leftarrow(c, a, b) \\
& c b a \longleftarrow(c, b, a)
\end{aligned}
$$

simpler way
math way to make order matter

6 possible permutations -

3 choices. 2 choices. I choice

| 3 |
| :---: | :---: |
| choices |${ }^{2}$ choices \(\begin{gathered}1 \\

choice\end{gathered}\) $3 \cdot 2 \cdot 1=3$! possibilities

In general, there are n ! permutations of n objects

$$
n \quad n-1 \quad n-2 \cdots 1
$$

