Math 4740

$$
8-30-23
$$

Ex: Let

$$
\begin{aligned}
S=\{ & (H, H, H),(H, T, H),(H, H, T),(H, T, T), \\
& (T, H, H),(T, T, H),(T, H, T),(T, T, T)\}
\end{aligned}
$$

(flipping a coin 3 times)
Let $f: S \rightarrow \mathbb{R}$
be the number of heads that
\mathbb{R} is the set of real numbers

For example,

$$
f(H, H, J)=2
$$

Later in the class
f will be called a random variable.

Example of making a probability space
suppose we want to model the experiment of rolling/throwing

$$
\begin{gathered}
\begin{array}{l}
\text { a }=\{1,2,3,4\} \leftarrow \begin{array}{l}
\text { sample } \\
\text { space of } \\
\text { all possible } \\
\text { outcomes } \\
\text { of rolling } \\
\text { the die }
\end{array} \\
\text { Omega }
\end{array} \\
\Omega=\{\phi,\{1\},\{2\},\{3\},\{4\}, \\
\{1,2\},\{1,3\},\{1,4\}, \\
\{2,3\},\{2,4\},\{3,4\}, \\
\{1,2,3\},\{1,2,4\}, \\
\{1,3,4\},\{2,3,4\},
\end{gathered}
$$

$$
\{1,2,3,4\}\}
$$

Ω is called the set of events. It will have certain properties. Ω contains all the sets that we want to be able to measure the probability of.
when S is finite, then Ω virally contains all the subsets of S.

What do these events mean?
$\phi \leftarrow$ represents no number came sp on the die
$\{2\} \leftarrow$ represents a 2 came up on the die
$\{2,3\} \leftarrow$ represents either a 2 or a 3 came vp on the die
$\{1,2,4\} \leftarrow$ represents either a 1 or a 2 or a 4 came up on the die
$\{1,2,3,4\} \longleftarrow$ represents either $1,2,3$, or Y came
op on the up on the die

Now we make a probability function $P: \Omega \rightarrow \mathbb{R}$.
On a 4-sided die each side is equally likely to occur.

The first step is to assign the probability to each side/number.

$$
\left.\begin{array}{l}
P(\{1\})=\frac{1}{4} \\
P(\{2\})=\frac{1}{4} \\
P(\{3\})=\frac{1}{4} \\
P(\{4\})=\frac{1}{4}
\end{array}\right\} \begin{aligned}
& \text { make } \\
& \text { equally } \\
& \text { likely. } \\
& \text { and } \\
& \text { adds up } \\
& \text { to } 1 .
\end{aligned}
$$

Now we extend P across all the events by doing disjoint sums. For example,

$$
\begin{aligned}
P(\{\mid, 3\}) & =P(\{\mid\})+P(\{3\}) \\
& =\frac{1}{4}+\frac{1}{4}=\frac{1}{2}
\end{aligned}
$$

$$
\begin{aligned}
P(\{1,2,3\})= & P(\{13)+P(\{2\})+P(\{3\}) \\
= & \frac{1}{4}+\frac{1}{4}+\frac{1}{4}=\frac{3}{4} \\
P(\{1,2,3,4\})= & P(\{1\})+P(\{2\})+P(\{3\}) \\
& +P(\{4\}) \\
= & \frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}=1
\end{aligned}
$$

We define

$$
P(\phi)=0
$$

Def: A probability space consists of two sets and a function (S, Ω, P).
We call S the sample space of our experiment. The elements of S are called outcomes. Ω is a set of subsets of S.
The elements of Ω are called events.
$P: \Omega \rightarrow \mathbb{R}$ is a function where for each event E from Ω we get a probability $P(E)$.

Furthermore, the following axioms/properties must hold:
(1) S is an event in Ω $\binom{$ We must be able to }{ calculate $P(S)}$
(2) If E is un event in Ω, then \bar{E} is an event in Ω

(3) If $E_{1}, E_{2}, E_{3}, \ldots$ is a finite or infinite sequence of events in Ω,
then $\bigcup_{i} E_{i}$ is an event in Ω
(4) $0 \leq P(E) \leqslant 1$ for any event E in Ω
(5) $P(S)=1$
(6) If $E_{1}, E_{2}, E_{3}, \ldots$ is a finite or infinite sequence of events in Ω that are pair-wise disjoint $\left[E_{i} \cap E_{j}=\phi\right.$ if $\left.i \neq j\right]$ then $P\left(\bigcup_{i} E_{i}\right)=\sum_{i} P\left(E_{i}\right)$
disjoint means no overlap
these E'scre disjoint) 7

$$
P\left(E_{1} \cup E_{2} \cup E_{3}\right)=P\left(E_{1}\right)+P\left(E_{2}\right)+P\left(E_{3}\right)
$$

End of def

This deft is based on the work of Andrey Kolmogorov 1930 s

Remark: A set Ω satisfying (1), (2), and (3) above is called a σ-algebra or σ-field.

Remark: If Ω is a r-algebra one can show that:
(a) $\phi \in \Omega$
(b) If $E_{1}, E_{2}, E_{3}, \ldots$ ace in Ω, then $\cap E_{i}$ is in Ω i
Proof: look at 1/31/22 notes from spring 22

How to construct a probability space when S is finite

Suppose S is a finite sample space and we want to make a probability space.
Define Ω to be the set that includes all the subsets of S.
$[\Omega$ is the power set of S]
For each outcome $\omega \in S$ pick some real number $0 \leq n_{\omega} \leq 1$ and define

$$
P(\{\omega\})=n_{\omega}
$$

At the same tine pick these numbers so that

$$
\sum_{w \in s} n_{w}=1
$$

means sum over
Now extend P to any set E in Ω

Suppose

$$
E=\left\{\omega_{1}, \omega_{2}, \ldots, \omega_{r}\right\}
$$

$\frac{E x:}{S=\{1,2,3,4\}}$
$p(\{1\})=\frac{1}{4}=n_{1}$
$p(\{2\})=\frac{1}{4}=n_{2}$
$P(\{3\})=\frac{1}{4}=n_{3}$
$p(\{4\})=\frac{1}{4}=n_{4}$
$n_{1}+n_{2}+n_{3}+n_{4}=1$

$$
\begin{aligned}
& \text { Define } \begin{aligned}
P(E)= & \sum_{i=1}^{r} P\left(\left\{\omega_{i}\right\}\right)
\end{aligned} \begin{array}{c}
=P(\{1\}) \\
+P(\{2\})
\end{array} \\
& =P\left(\left\{\omega_{1}\right\}\right)+P\left(\left\{\omega_{2}\right\}\right)+\ldots \\
& \ldots+P\left(\left\{\omega_{r}\right\}\right)
\end{aligned}
$$

If $E=\phi$, then define

$$
P(\phi)=0
$$

Theorem: The construction above creates a probability Space (S, Ω, P l.
proof: See notes from $2 / 2 / 22$ Spring 22θ

