$$
\begin{aligned}
& \text { math } 4740 \\
& 8 / 28123
\end{aligned}
$$

Def: Suppose S is some set and suppose $A \subseteq S$.
The complement of A in S is $\bar{A}=\underbrace{\{x \text { is in } S \text { and } x \text { is not }}_{\text {read: } \bar{A} \text { consists of all } x \text { where }} \begin{array}{r}\{x \mid x \in S \text { and } x \notin A\}\end{array}$

Some other notations for \bar{A} are

$$
S-A
$$

A^{c}

Ex: $S=\{1,2,3,4,5,6\}$

$$
A=\{1,3,5\} \text { odd \#s }
$$

Then

$$
\bar{A}=\{2,4,6\}
$$

Def: Let A and B be sets. The intersection of A and B is

$$
A \cap B=\underbrace{\{x \mid x \in A \text { and } x \in B\}}_{A \cap B \text { consists of } \text { all } x}
$$ where x is in A and x is in B

The union of A and B is

$$
A \cup B=\{x \mid x \in A \text { or } x \in B\}
$$

all x where x is in A or x is in B
[in math "or" can] mean both $x \in A, x \in B\}$

Def: The empty set is the set with no elements.
It's denoted by

$$
\phi \text { or }\}
$$

Ex: Let S be the sample space for flipping a coin 3 times in a cow.

$$
\begin{aligned}
S=\{ & (H, H, H),(H, H, T),(H, T, H), \\
& (H, T, T),(T, H, H),(T, H, T), \\
& (T, T, H),(T, T, T)\}
\end{aligned}
$$

Let

$$
\begin{aligned}
& A=\{(H, H, T),(H, H, H),(T, T, H)\} \\
& B=\{(T, T, T),(T, T, H),(H, H, H),(T, H, T)\} \\
& C=\{(H, T, H),(H, T, T),(T, H, H)\}
\end{aligned}
$$

$$
\begin{array}{ccc}
(H, T, H) & (H, T, T) & (T, H, H) \\
0 & 0 & 0
\end{array}
$$

A

Then,

$$
\begin{aligned}
& A \cup B=\{(H, H, T),(H, H, H),(T, T, H), \\
& (T, T, T),(T, H, T)\} \\
& A \cap B=\{(H, H, H),(T, T, H)\} \\
& A \cap C=\phi<B \cap C=\phi
\end{aligned}
$$

Def: Two sets X and Y are disjoint if $X \cap Y=\phi$.

Ex: In the previous example A and C are disjoint. Also, B and C were disjoint.

Def: Let $A_{1}, A_{2}, \ldots, A_{n}$ be sets. Define

$$
\left.\begin{array}{rl}
\bigcap_{i=1}^{n} A_{i} & =A_{1} \cap A_{2} \cap \cdots \cap A_{n} \\
& =\left\{x \left\lvert\, \begin{array}{lll}
x \in A_{1} & \text { and } x \in A_{2} \\
\text { and } & \cdots & \text { and } x \in A_{n}
\end{array}\right.\right\} \\
& =\left\{x \mid x \in A_{i}\right. \text { for all } \\
\text { and }
\end{array}\right\}
$$

$$
\begin{aligned}
& \bigcup_{i=1}^{n} A_{i}=\left\{\begin{array}{l|lll}
x & \begin{array}{lll}
x \in A_{1} & \text { or } & x \in A_{2} \text { or } \\
\text { … or } & x \in A_{n}
\end{array}
\end{array}\right\} \\
& i=1=\left\{x \mid x \in A_{i} \text { for some } \begin{array}{ll}
1 \leq i \leq n
\end{array}\right\} \\
& =\left\{x \left\lvert\, \begin{array}{l}
x \text { is in at least } \\
\text { one of } A_{1}, A_{2}, \ldots, A_{n}
\end{array}\right.\right\}
\end{aligned}
$$

$$
\text { Ex: } S=\{1,2,3,4,5,6,7,8,9,10,11,12\}
$$ represents rolling a 12 -sided die (dodecahedron)

Let

$$
\begin{aligned}
& \text { Let } \\
& \begin{array}{l}
A_{1}
\end{array}=\{1,2,3\} \quad A_{3}=\{4,5,6,7\} \\
& A_{2}
\end{aligned}=\{3,4,5\} \quad A_{4}=\{3,8\} \quad S
$$

Def: Suppose $A_{1}, A_{2}, A_{3}, \ldots$ are an infinite number of sets.

Define

$$
\left.\begin{array}{rl}
\bigcap_{i=1}^{\infty} A_{i} & =A_{1} \cap A_{2} \cap A_{3} \cap \cdots \\
& =\{x \mid x \text { is in every one }\} \\
\text { of the } A_{i}
\end{array}\right\}, ~ \begin{aligned}
\bigcup_{i=1}^{\infty} A_{i} & =A_{1} \cup A_{2} \cup A_{3} \cup \cdots \\
& =\left\{x \left\lvert\, \begin{array}{l}
\text { is in at least } \\
\text { one of the } A_{i}
\end{array}\right.\right\}
\end{aligned}
$$

Ex: The set of integers is

$$
\mathbb{Z}=\{\ldots,-4,-3,-2,-1,0,1,2,3,4, \ldots\}
$$

For each $i \geqslant 1$, define

$$
\begin{aligned}
& \text { For each } i \geqslant 1 \text {, define } \\
& A_{i}=\{x \mid x \in \mathbb{Z} \text { and }-i \leq x \leq i\}
\end{aligned}
$$

Then,

$$
\begin{aligned}
& A_{1}=\{-1,0,1\} \\
& A_{2}=\{-2,-1,0,1,2\} \\
& A_{3}=\{-3,-2,-1,0,1,2,3\} \\
& A_{4}=\{-4,-3,-2,-1,0,1,2,3,4\} \\
& A_{5}=\{-5,-4,-3,-2,-1,0,1,2,3,4,5\}
\end{aligned}
$$

Then,

$$
\begin{aligned}
& \bigcap_{i=1}^{\infty} A_{i}=\{-1,0,1\} \leftarrow A_{1} \\
& \bigcup_{i=1}^{\infty} A_{i}=\mathbb{Z} \text { all the }
\end{aligned}
$$

Def: Let A and B be sets.
The Cartesian product of A and B is

$$
\underbrace{A \times B}_{\text {"A cross } B \text { " }}=\underbrace{\{(a, b) \mid a \in A \underset{b \in B}{\text { and }}\}}_{\begin{array}{c}
\text { all elements of the } \\
\text { form }(a, b) \text { where }
\end{array}}
$$

Ex: Let $A=\{H, T\}$

$$
\text { and } B=\{1,2,3,4\}
$$

Then,

$$
\begin{aligned}
A \times B=\{ & (H, 1),(H, 2),(H, 3),(H, 4), \\
& (T, 1),(T, 2),(T, 3),(T, 4)\} \\
A \times A= & \{(H, H),(H, T),(T, T),(T, H)\} \\
B \times A= & \{(1, H),(2, H),(3, H),(4, H), \\
& (1, T),(2, T),(3, T),(4, T)\}
\end{aligned}
$$

Def: Let A and B be sets. A function f from A to B, notated $f: A \rightarrow B$, is a rule that assigns to each element of A a district element of B.

