$$
\begin{aligned}
& \text { Math } 4740 \\
& 11 / 6 / 23
\end{aligned}
$$

Topic 6 -More on Expected Valve, Variance, Standard Deviation
\(\left.\begin{array}{l}Given a discrete random \\
variable \bar{X}: S \rightarrow \mathbb{R}, \\
if you take a function \\
f: \mathbb{R} \rightarrow \mathbb{R} and compute \\
the composition fo \bar{X} \\
then you will get \\

a new random variable\end{array}\right]\)| under |
| :--- |
| appropriate |
| conditions |
| such as |
| a |
| finite |
| sample |
| space |

Ex: Suppose we roll two 3-sided dice, each labeled 1,2,3 where each side is equally likely. Let X be the sum of the dice.

Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be $f(t)=t^{2}$.

Expected value doesn't give all the info for a probability function.
It can't detect how much the data is spread out or not spread out.
Ex: ($\left.\begin{array}{c}\text { Two probability functions w/ same } \\ \text { expected value but data spread }\end{array}\right)$ expected value but data spread)
out differently

$$
\begin{gathered}
E\left[\mathbb{X}_{1}\right]=(-2)\left(\frac{1}{5}\right)+(-1)\left(\frac{1}{5}\right) \\
+(0)\left(\frac{1}{5}\right)+(1)\left(\frac{1}{5}\right) \\
+(2)\left(\frac{1}{5}\right)=0
\end{gathered}
$$

$$
\begin{gathered}
E\left[\bar{x}_{2}\right]=(-2)\left(\frac{1}{400}\right)+(-1)\left(\frac{1}{400}\right) \\
+(0)\left(\frac{99}{100}\right)+(1)\left(\frac{1}{400}\right) \\
+(2)\left(\frac{1}{400}\right)=0
\end{gathered}
$$

We want a number that measures the average magnitude of the fluctuations of the random variable from it's expected value. Let $\mu=E[\bar{x}]$.
One might try to measure the expected value of $|\bar{\Sigma}-\mu|$, ie the expected value of the distance between \mathbb{Z}^{\prime} s valves and μ. This is too hard to vie. So instead we measure

$$
E[\underbrace{\left.(\underline{X}-\mu)^{2}\right]}_{\begin{array}{c}
\text { square of } \\
\text { distance } \\
\text { between } X \text { and } \mu
\end{array}}] \begin{array}{l}
|\bar{X}-\mu|=\sqrt{(X-\mu)^{2}} \\
(X-\mu)^{2}=|X-\mu|^{2}
\end{array}]
$$

Def: Let X be a discrete random variable. Define the variance of X to be $\operatorname{Var}(\bar{Z})=E\left[(\bar{X}-\mu)^{2}\right]$.
Define the standard deviation of X to be $\sigma_{\underline{X}}=\sigma=\sqrt{\operatorname{Var}(\bar{x})}$

$$
\text { (where } \mu=E[\bar{\Sigma}] \text {) }
$$

Note: One can prove that if $x_{1}, x_{2}, x_{3}, \ldots$ are the outputs of \bar{X}, and $f: \mathbb{R} \rightarrow \mathbb{R}$, then

$$
\begin{aligned}
& \text { and } f: \mathbb{R} \rightarrow \mathbb{K}, \\
& E[f(\bar{X})]=\sum_{i} f\left(x_{i}\right) \cdot p\left(X=x_{i}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \text { Thus, } \\
& \operatorname{Var}(\bar{X})=\sum_{i}\left(x_{i}-\mu\right)^{2} \cdot P\left(\mathbb{X}=x_{i}\right) \\
& \\
& (\text { where } \mu=E[\bar{X}])
\end{aligned}
$$

Thus,

Ex: Consider the experiment of rolling two 6-sided dice.
Let \mathbb{Z} be the sum of the dice

Recall that $\mu=E[\bar{\Sigma}]=7$.
Then,

$$
\begin{aligned}
& \text { Then, } \\
& \begin{aligned}
\operatorname{Var}(\bar{X}) & =\sum_{x_{i}}\left(x_{i}-7\right)^{2} \cdot P\left(\bar{X}=x_{i}\right) \\
& =(2-7)^{2} \cdot\left(\frac{1}{36}\right)+(3-7)^{2} \cdot\left(\frac{2}{36}\right)
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
& +(4-7)^{2}\left(\frac{3}{36}\right)+(5-7)^{2}\left(\frac{4}{36}\right) \\
& +(6-7)^{2} \cdot\left(\frac{5}{36}\right)+(7-7)^{2}\left(\frac{6}{36}\right) \\
& +(8-7)^{2}\left(\frac{5}{36}\right)+(9-7)^{2} \cdot\left(\frac{4}{36}\right) \\
& +(10-7)^{2}\left(\frac{3}{36}\right)+(11-7)^{2}\left(\frac{2}{36}\right) \\
& +(12-7)^{2}\left(\frac{1}{36}\right)=\frac{35}{6} \approx 5.83 \\
& \sigma_{\Sigma}=\sqrt{\operatorname{Var}(\Sigma)}=\sqrt{\frac{35}{6}} \approx 2.415
\end{aligned}
$$

Theorem: Let X be a discrete random variable. Let $\mu=E[\bar{X}]$.
Then,

$$
\begin{aligned}
\text { hen, } \\
\begin{aligned}
\operatorname{Var}(X) & =E\left[\bar{X}^{2}\right]-(E[\bar{X}])^{2} \\
& =E\left[X^{2}\right]-\mu^{2}
\end{aligned}
\end{aligned}
$$

proof: Let $x_{1}, x_{2}, x_{3}, \ldots$ be the values of \mathbb{X}. Then

$$
\begin{aligned}
\operatorname{Var}(X) & =\sum_{i}\left(x_{i}-\mu\right)^{2} \cdot P\left(X=x_{i}\right) \\
& =\sum_{i} x_{i}^{2} \cdot P\left(\bar{Z}=x_{i}\right) \\
& -2 \mu \sum_{i} x_{i} \cdot P\left(8=x_{i}\right) \\
& +\mu^{2} \sum_{i} P\left(B=x_{i}\right)
\end{aligned}
$$

$-\left(\begin{array}{c}\text { equals } \\ 1\end{array}\right.$

$$
\begin{aligned}
= & \sum_{i} x_{i}^{2} \cdot P\left(X=x_{i}\right) \\
& -2 \mu^{2}+\mu^{2} \\
= & E\left[X^{2}\right]-\mu^{2}
\end{aligned}
$$

