Math 4740

$$
11 / 1 / 23
$$

Topic 5-Binomial Random Variables

A Bernoulli trial is an experiment with two possible outcomes: success or failure.
Suppose success occurs with probability p and failure with probability $1-p$.

Ex: Experiment $=$ flipping a coin

$$
\begin{aligned}
& \text { success }=\text { heads } \leftarrow p=1 / 2 \\
& \text { failure }=\text { tails } \& 1-p=1 / 2
\end{aligned}
$$

Ex: Experiment $=$ rolling two 6 -sided die
success $=$ sum of dice is $7 \& p=6 / 36$
failure $=$ sum of dice is not $7 \alpha 1-p$

$$
=30 / 36
$$

Now suppose that n Bernoulli trials, each with success p, are performed independently. Let \mathbb{Z} be the number of successes. Then X is called a binomial random variable with parameters n and p.

Ex: Suppose the Bernoulli trial is flipping a coin and success is heads with probability $p=1 / 2$.
Let's repeat this experiment $n=3$ times and let \mathbb{X} be the number of heads that occur. Then X is a binomial random vomiable with parameters $n=3, p=1 / 2$.

Theorem: Let \mathbb{Z} be a binomial random variable with parameters n and p. Then,

$$
P(\bar{X}=k)= \begin{cases}\binom{n}{k} p^{k}(1-p)^{n-k} & \text { if } k=0,1,2, \ldots n \\ 0 & \text { otherwise }\end{cases}
$$

proof: Let k be $0,1,2, \ldots$, or n.
Let's calculate $P(\bar{X}=k)$.
How many ways can you get exactly k successes in n trials?

Ex: $n=4, k=2$
s sf f $\&\binom{4}{2}=6$
pick 2 spots where the successes go spf offs fofs sse fsf ifs
sfsf

For general n and k, there are $\binom{n}{k}$ ways you can get exactly k successes in n trials.
Each of these sequences has probability $\underbrace{p^{k}}_{k \text { successes }} \underbrace{(1-p)^{n-k}}$ failures
because of independence.
Ex:

$$
\begin{aligned}
& \frac{s}{\uparrow} \frac{s}{\uparrow} \frac{f}{\uparrow} \frac{f}{\uparrow} \\
& p \cdot p \cdot(1-p) \cdot(1-p)=p^{2}(1-p)^{4-2}
\end{aligned}
$$

Thus, $p(\bar{x}=k)=\binom{n}{k} p^{k}(1-p)^{n-k}$.

If $k \neq 0,1, \ldots, n$, then \mathbb{X} can never equal k, so $P(\underline{X}=k)=0$.

Ex: Suppose we flip a coin 3 times. What is the probability that exactly 2 heads occur?
Let $n=3$, success = head,
$p=1 / 2, \quad X=\#$ of heads in 3 flips.

$$
\begin{aligned}
& P=1 / 2, \\
& P(Z=2)=\binom{n}{2} p^{2}(1-p)^{3-2} \\
&=\binom{3}{2} \cdot\left(\frac{1}{2}\right)^{2}\left(1-\frac{1}{2}\right)^{1}
\end{aligned}
$$

2 svcereses 1 failure
or heads or tails

$$
=3 \cdot\left(\frac{1}{2}\right)^{2}\left(\frac{1}{2}\right)=\frac{3}{8}
$$

Ex: What if flip a coin 100 times and you want the probability of exactly 48 heads occuring?
$n=100 \leftrightarrow \#$ flips
$k=48 \leftarrow \#$ successes/heads
$p=1 / 2 \leftarrow$ probability of one success
$1-p=1-1 / 2=1 / 2 \leftarrow$ probability of one

$$
X=\# \text { successes } / \text { heads }
$$

$$
\begin{aligned}
& P(X=48)=\binom{100}{48} \cdot\left(\frac{1}{2}\right)^{48}\left(1-\frac{1}{2}\right)^{100-48} \\
& =\binom{100}{48} \cdot\left(\frac{1}{2}\right)^{48} \cdot\left(\frac{1}{2}\right)^{52} \\
& =\binom{100}{48} \cdot \frac{1}{2^{100}} \\
& =\frac{93,206,558,875,049,876,949,581,681,100}{1,267,650,600,228,229,401,496,703,205,376} \\
& \approx 0.073527 \approx 7.359
\end{aligned}
$$

Ex: Suppose we flip a coin 20 times. What is the probability of getting between 10 and 12 heads? (ie 10, 11 , or 12 heads).
$n=20 \leftarrow \#$ flips
$p=1 / 2 \leftarrow$ probability of success/heads

$$
\begin{aligned}
& p=1 / 2 \leftarrow \text { probability } \\
& 1-p=1 / 2 \leftarrow \text { probability of failure } / t a i l s
\end{aligned}
$$

$\bar{X}=\#$ of successes/heads

$$
\begin{aligned}
& P(10 \leq X \leq 12) \\
& =P(X=10)+P(X=11)+P(\bar{X}=12) \\
& =\binom{20}{10} \cdot \underbrace{\left(\frac{1}{2}\right)^{10}}_{\text {sucless }} \underbrace{\left(\frac{1}{2}\right)^{10}}_{\text {frilur }}+\binom{20}{11} \underbrace{\left(\frac{1}{2}\right)^{11}}_{\text {success }} \underbrace{\left(\frac{1}{2}\right)^{9}}_{\text {failvee }} \\
& +\binom{20}{12} \underbrace{\left(\frac{1}{2}\right)^{12}}_{\text {svecess }} \underbrace{\left(\frac{1}{2}\right)^{8}}_{\text {failure }}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{\binom{20}{10}+\binom{20}{11}+\binom{20}{12}}{2^{20}} \\
& =\frac{184,756+167,960+125,970}{1,048,576} \\
& \approx 0,456511 \ldots \approx 45,6590
\end{aligned}
$$

Ex: Suppose we roll two 6-sided dice 20 times. Suppose we say that a sum of 7 or 11 on the die is a success, and any other sum is a failure.

Let $\bar{X}=\#$ of successes.
What is $P(X=12) ?$

$$
\begin{aligned}
& n=20 \\
& p=\underbrace{\frac{6}{5}}_{\text {sum }_{7}^{\frac{6}{36}}}+\underbrace{\frac{2}{36}}_{\text {sum is }}=\frac{8}{36} \leftarrow \begin{array}{c}
\text { probability } \\
\text { of success }
\end{array} \\
& 1-p=1-\frac{8}{36}=\frac{28}{36} \leftarrow \leftarrow \begin{array}{c}
p_{\text {probability of }}^{\text {failure }}
\end{array} \\
& p(\bar{X}=12)=\binom{20}{12} \cdot \underbrace{\left(\frac{8}{36}\right)^{12}}_{\text {successes }} \cdot \underbrace{\left(\frac{28}{36}\right)^{8}}_{\text {failures }} \\
&=\binom{20}{12} \cdot\left(\frac{2}{9}\right)^{12} \cdot\left(\frac{7}{9}\right)^{8}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{\binom{20}{12} \cdot 2^{12} \cdot 7^{8}}{9^{20}} \\
& =\frac{(125,970)(4096)(5,764,801)}{12,157,665,459,056,928,801} \\
& \approx 0.000244659 \approx 0.0249
\end{aligned}
$$

The: Let \mathbb{X} be a binomial random variable with parameters n and p, then $E[z]=n p$.
proof: See Spring notes.

Intuition: Say we tossed a coin 100 times then we would expect the average $\#$ of heads to be $n \cdot p=100 \cdot \frac{1}{2}=50$

