Math 4740 1014123

HF 2
$5(c)$ Sequence of length 8
how many have exactly three O's, thee e 1's, and two 2 's?
Ex: 01102012
Answers

Step 1: Pick where the three o's go.
\# F Ways =

$$
\begin{aligned}
\binom{8}{3} & =\frac{8!}{3!5!} \\
& =\frac{8 \cdot 7 \cdot 6 \cdot 5!}{6 \cdot 5!} \\
& =56
\end{aligned}
$$

Step 2: Pick where the three 1's yo.
$\underline{0}-\underline{0}--\underline{0}-$

$\binom{5}{3}=\frac{5!}{3!2!}=10$	
Step $3!$ Pick where	$0102 \geq \underline{2} \underline{2}$
the two 2 's go.	
$\binom{2}{2}=1$	

$$
\text { Answer }=56 \cdot 10 \cdot 1=560
$$

$1+w 2$
(13) A coin is tossed 20 times.
(a) What is the probability that at least 2 heads occurs?
(b) what is the probability that at most 3 heads occur?

Solution:

$$
\begin{aligned}
\frac{\text { Solution: }}{\text { Sample space size }} & =2^{20} \\
& =1,048,576
\end{aligned}
$$

(a) Want: $P(\geqslant 2$ heads occuring $)$

$$
\begin{aligned}
& =1-P(<2 \text { heads occuring }) \\
& =1-P\binom{n_{0} \text { heads }}{\text { occuring }}-P\binom{\text { exactly }}{\text { head occuring }}
\end{aligned}
$$

$$
=1-\frac{1}{2^{20}}-\frac{\binom{20}{i}}{2^{20}}
$$

(b) Want:

$$
\begin{aligned}
& P(\leqslant 3 \text { heads occuring }) \\
& =P\binom{\text { no heads }}{\text { occering }}+P\binom{\text { exactly }}{\text { head occuring }} \\
& \left.+P\binom{\text { exactly }}{\text { heads occuring }}+P\binom{\text { exactly } 3}{\text { neads }} \text { occuring }\right)
\end{aligned}
$$

$$
=\frac{1}{2^{20}}+\frac{20}{2^{20}}+\frac{\binom{20}{2}}{2^{20}}+\frac{\binom{20}{3}}{2^{20}}
$$

\uparrow
IIITIHIITIIITHIITITI
$\binom{20}{2} \leftarrow$ pick where heads go
$\binom{18}{18}=1 \leftarrow$ \# ways to now put tails in

$$
\begin{aligned}
& =\frac{1}{2^{20}}+\frac{20}{2^{20}}+\frac{\frac{20 \cdot 19}{2}}{2^{20}}+\frac{\frac{20 \cdot 19.18}{6}}{2^{20}} \\
& =\frac{1}{2^{20}}+\frac{20}{2^{20}}+\frac{190}{2^{20}}+\frac{1140}{2^{20}}
\end{aligned}
$$

HF 2
(11) Roll ten 6-sided die. Probability exactly one 4 , exactly six S's, the other three rolls are any thing other than 4^{\prime} 's and 5^{\prime} 's.
Ex: 515 5 1 5 4 5 5 3
sample space size $=6^{10}$

$$
=60,466,176
$$

\# of sequences we want to count is:
Step: Put
where 4 goes.
$\binom{10}{1}=10$

Hw 2 (16) Dealt 5 cords from S2-cand deck

$$
\begin{aligned}
& \text { sample space size }=\binom{52-3}{2}=\binom{49}{2} \\
&=\frac{49!}{2!47!}=\frac{49,48}{2}=1,176
\end{aligned}
$$

(a) What's the chances the other two cards are clubs so you have a flush?

$$
\begin{aligned}
& \binom{13^{1+3}-3}{2}^{\text {clubs }}=\binom{10}{2}=\frac{10!}{2!8!}=\frac{10.9}{2} \\
& \text { pick 2 } \\
& =45 \\
& \text { answer }=\frac{45}{1,176} \approx 0.03826 \\
& \frac{10 \cdot 9}{49 \cdot 48}
\end{aligned}
$$

(b) odds you get straight but not straight flush?
straights
$A^{?} 2^{\infty} 3^{m} 4^{m} 5 \leftarrow 4.4=16$
$2^{m} 3^{m} 4^{3} 5^{?} 6^{?} \in 4 \cdot 4=16$
Total \# straights= $\begin{aligned} & 16+16 \\ & =32\end{aligned}$
Straight flushes

$$
\text { Answer }=\frac{32-2}{1,176}=\frac{30}{1,176}
$$

