Math 4740 1014123

HW 2 5(c) Sequence of length 8 how many have exactly three O's, three 1's, and two 2's P		
<u>Ex:</u> <u>011020</u>	$\frac{1}{2}$	
Answer		
<u>Step 1</u> : Pick where the three O's go.	0_00	
$\begin{array}{c} \text{# Ways} = \\ \begin{pmatrix} 8 \\ 3 \end{pmatrix} = \frac{8!}{3!5!} \end{array}$		
$= \frac{8.7.6.8!}{6.8!}$ = 56		
Step 2: Pick Where the three l'i go.		

$$\binom{5}{3} = \frac{5!}{3! \, 2!} = 10$$

Step 3! Pick where $0 \ 0 \ 2 \ 0 \ 1 \ 2$

the two 2's go.

 $\binom{2}{2} = 1$

Answer = 56.10.1 = 560

HW 2 (13) A coin is tossed 20 times. (a) What is the probability that at least 2 heads occurs? (b) what is the probability that at most 3 heads occur?

Solution: 20 Sample spuce size = Z = 1,048,576

(a) Want: $P(\geq 2$ heads occurring) $= \int -P(< 2 heads occurring)$ = | - P(no heads) - P(exactly 1 occuring) - P(head occuring)

$$= \int -\frac{1}{2^{20}} \frac{\binom{2^{\circ}}{1}}{2^{20}}$$

$$= \int -\frac{1}{2^{20}} \frac{\binom{2^{\circ}}{1}}{2^{20}} \frac{1}{2^{20}} \frac{1}{2^{20$$

(b) Want:

$$P(\leq 3 \text{ heads occuring})$$

 $= P(\begin{array}{c} \text{no heads} \\ \text{occuring} \end{array}) + P(\begin{array}{c} \text{exactly l} \\ \text{head occuring} \end{array})$
 $+ P(\begin{array}{c} \text{exactly 2} \\ \text{heads occuring} \end{array}) + P(\begin{array}{c} \text{exactly 3} \\ \text{heads occuring} \end{array})$

$$= \frac{1}{2^{20}} + \frac{20}{2^{20}} + \frac{\binom{20}{2}}{2^{20}} + \frac{\binom{20}{2}}{2^{20}} + \frac{\binom{20}{3}}{2^{20}}$$

$$= \frac{1}{2^{20}} + \frac{20}{2^{20}} + \frac{20\cdot19}{2^{20}} + \frac{190}{2^{20}} + \frac{1140}{2^{20}} + \frac{11$$

HW Z I Roll ten 6-sided die. Probability exactly one 4, exactly six S's, the other three rolls one anything other than 4's and 5's. Ex; <u>5155154553</u> Sample space size = 6 = 60,466,176# of requences we want to count is: 4 Stepl: Put where 4 goes. $\begin{pmatrix} 10\\ 1 \end{pmatrix} = 10$

Step 2: Now	$5_{55}_{5455}_{55}_{55}_{55}_{55}_{55}_{$
put the six	
55 11.	
$\begin{pmatrix} 9\\6 \end{pmatrix} = \frac{9}{6!3!}$	
$=\frac{9,8,7}{6}=84$	
Step 3: The remaining three spots can be	$\frac{S(1)}{\sqrt{5}} = \frac{S(1)}{\sqrt{5}} = \frac{4}{\sqrt{5}} = \frac{S(3)}{\sqrt{5}}$
1,2,3,016,	4 choices 4 choices 4
$\#$ ways = Ψ, Ψ, Ψ	Choices
= 64	
	10.84.64
Answer = -	610
53,760	
60,466,17	

Sample space size =
$$\begin{pmatrix} 5z-3 \\ z \end{pmatrix} = \begin{pmatrix} 49 \\ z \end{pmatrix}$$

= $\frac{49!}{2! 47!} = \frac{49!48}{2} = 1,176$

(a) What's the chances the other
two conder are clubs so
You have a flush?

$$(13-3)^{2} = (10)^{2} = \frac{10!}{2!8!} = \frac{10.9}{2}$$

 $(12-3)^{2} = (10)^{2} = \frac{10!}{2!8!} = \frac{10.9}{2}$
 $(12-3)^{2} = (12)^{2} = \frac{10!}{2!8!} = \frac{10.9}{2}$
 $(12-3)^{2} = \frac{10!}{2!8!} =$

(b) odds you get straight
but not straight flush?
(5) odds you get straight?
(5) odds you get straight?
(5)
$$(1000 \text{ fr})$$
?
(6) (1000 fr) ?
(7) (200 fr) (400 fr) ?
(7) $(400 $(400$

