Math 4740

$$
10 / 30 / 23
$$

Let's look at an expected value for free odds betting.
Suppose you bet \#lo on the pass line and if a point is made then you bet an additional \$10 as a free odds bet. Let \mathbb{Z} be the amount won or lost.
Let's calculate $E[\bar{X}]$.
\$10) 4 paid 1:1
(\$10) $\&$ paid at true odds

$$
\begin{aligned}
& E[X]=\underbrace{(\$ \mid 0)\left(\frac{8}{36}\right)}_{\begin{array}{c}
\text { dor } \|_{\text {on come }} \text { out roll }
\end{array}}+\underbrace{(-\$ 10)\left(\frac{4}{36}\right)}_{\substack{2,3 \text {, or } 12 \\
\text { on come out } \\
\text { roll }}} \\
& 4 \text { or } 10
\end{aligned}
$$

$$
\begin{aligned}
& 5019 \\
& \text { Sort } 9 \\
& +\underbrace{2 \cdot(\$ 25)\left(\frac{4}{36}\right)\left(\frac{4}{10}\right)}_{5 \text { or } 9 \text { as point }}+\underbrace{2 \cdot(-\$ 20)\left(\frac{4}{36}\right)\left(\frac{6}{10}\right)}_{5 \text { or } 9 \text { as point }} \\
& 5 \text { or } 9 \text { as point } \\
& \text { and we won } \\
& \$ 10 \leftarrow \text { pass line } 1: 1 \quad-\$ 10 \leftarrow \text { pass line }
\end{aligned}
$$

$$
\frac{\$ 15}{\$ 25} \in \text { free odds } 3: 2 \quad \frac{-\$ 10}{-\$ 20} \leftarrow \text { free odds }
$$

6018

$$
+\underbrace{2 \cdot(\$ 22)\left(\frac{5}{36}\right)\left(\frac{5}{11}\right)}_{6 \text { or } 8 \text { as point }}+\underbrace{2 \cdot(-\$ 20)\left(\frac{5}{36}\right)\left(\frac{5}{11}\right)}_{6 \text { or } 8 \text { as point }}
$$

6 or 8 as point and we won
$\$ 10 \leftarrow$ pass line $1: 1$
$\frac{\$ 12}{\$ 22} \leftarrow$ free odds $6: 5$ and we lost - \$lot pass line $\frac{-\$ 10}{-\$ 20} \leftarrow$ free odds

$$
=-\$ \frac{14}{99} \approx-\$ 0.1414
$$

So it you follow this betting strategy then you lose a bout $14 \$$ per game in the long run,

Let's now put the above in "per $\$ 1$ bet" terms to compare with our non-free odds betting expected valve. Let's see what the average amount bet is with our $\$ 10$ puss line $/ \$ 10$ free odds

$$
\begin{aligned}
& \text { betting scheme is. } \\
& \begin{array}{l}
\text { amount probability amount public bet } \\
\text { bet wet bet it }
\end{array} \\
& \left.\begin{array}{c}
\text { average } \\
\text { amount } \\
\text { bet }
\end{array}\right)=\underbrace{(\$ 10) \overbrace{\text { come use foll }}^{\left(\frac{12}{36}\right)}}_{\text {come out roll }}+\underbrace{\left(\frac{24}{36}\right)}_{\underbrace{(\$ 20)}_{\text {bet }} \text { we bet it }} \\
& \text { is } 7,11,2,3,12 \quad 4,5,6,8,9,10 \\
& =(\$ 10)\left(\frac{1}{3}\right)+(\$ 20)\left(\frac{2}{3}\right) \\
& =\left(\$ \frac{50}{3}\right) \approx \$ 16.67
\end{aligned}
$$

Expected value per dollar wagered is $\frac{-\$ 0.1414}{\$ 16.67} \approx-\$ 0.0085$

Recall that with just $\$ 1$ bet on the pass line and no free odds bet the expected valve was $-\$ 0.01414$

St, Petersburg Paradox
Goes back to the 1700's. A casino offers a game to a single player. A fair coin is tossed at each stage.
The pot (amount won) starts at $\$ 2$ and doubles every time a head is flipped. The first time a tail is flipped the game ends and the player wins whats in the pot.
How much would you pay to play this game? You don't yet back What you paid, just what you win.

Ex: pay $\$ 5$ to play

pot $\binom{$ amount }{ won }	flip		
$\$ 2$	H		
$\$ 4$	H		
$\$ 8$	H		
$\$ 16$	+	\leftarrow	game
:---:			
stops	,		

$$
\begin{aligned}
& \text { winnings }=\$ 16 \\
& \text { amount paid }=-\$ 5 \\
& \text { net amount won }=\$ 11
\end{aligned}
$$

Let X be the net amount won.

$$
\begin{aligned}
E[区] & =(-\$ \text { amount paid }) \\
& +\underbrace{\left(\frac{1}{2}\right)}_{\substack{(\$ 2) \\
\underbrace{\text { Won } \$ 2}_{\text {probability }}}}+(\$ 4) \underbrace{\left(\frac{1}{2}\right)}_{\substack{\text { probability } \\
\text { won } \$ 4 \\
\left(\frac{1}{2}\right)}} \\
& +(\$ 8) \underbrace{\left(\frac{1}{8}\right)}_{\left(\frac{1}{2}\right)\left(\frac{1}{2}\right)\left(\frac{1}{2}\right)}+(\$ 16)\left(\frac{1}{16}\right)+\cdots \\
= & (-\$ \text { amount paid) } \\
& +\$ 1+\$ 1+\$ 1+\ldots \\
= & \infty
\end{aligned}
$$

This game has infinite expected value

But winning $\$ 2^{n}$ has probability $\frac{1}{2^{n}}$
To win at least $\$ 2^{20}=\$ 1,048,576$ has probability equal to

$$
\frac{1}{2^{20}}+\frac{1}{2^{21}}+\frac{1}{2^{22}}+\cdots
$$

probability probability probabilist s $\$ 2^{20} \quad \$ 2^{21} \quad \$ 2^{22}$

$$
\begin{aligned}
& =\frac{1}{2^{20}}\left[1+\frac{1}{2}+\left(\frac{1}{2}\right)^{2}+\left(\frac{1}{2}\right)^{3}+\ldots\right] \\
& =\frac{1}{2^{20}}\left[\frac{1}{1-1 / 2}\right]=\frac{1}{2^{20}}[2]=\frac{1}{2^{19}} \approx \\
& 1+x+x^{2}+\ldots=\frac{1}{1-x} \text { if }-1<x<1
\end{aligned}
$$

