Math 4740

$$
10 / 25 / 23
$$

pass line bet

$$
\$ 10
$$

Let's calculate the expected value of betting on the pass line.

Sum of dice	\# ways to roll
2	1
3	2
4	3
5	4
6	5
7	6
8	5
9	4
10	3
11	2
12	1

probabilites for come out roll

| WIN |
| :--- | :--- |\rightarrow| roll | probability |
| :---: | :---: |
| LOSE or II | $8 / 36$ |
| 2,3 or 12 | $4 / 36$ |
| 4 | $3 / 36$ |
| 5 | $4 / 36$ |
| | |
| point | |
| is | |
| made | |
| with | |
| Probability | |
| $24 / 36$ | |\quad| 6 | $5 / 36$ |
| :---: | :---: |
| 8 | $5 / 36$ |
| 9 | $4 / 36$ |
| 10 | $3 / 36$ |

Let's calculate the probabilities of winning or losing once a point is made

Ex: Suppose the come out roll sums to 8 .
So, 8 is the point.
Now we keep rolling until either an 8 or a 7 comes up.
On an indisidual roll, let A be the event that the sum is 8 and B be the event that the sum is 7 .

If we keep rolling, then...

- the probability that A occurs before B (ic an 8 is rolled before a 7) is

$$
\frac{P(A)}{P(A)+P(B)}=\frac{5 / 36}{5 / 36+6 / 36}=\frac{5}{11}
$$

- the probability that B occurs before A (ie a 7 before an 8)

$$
\frac{P(B)}{P(B)+P(A)}=\frac{6 / 36}{6 / 36+5 / 36}=\frac{6}{11}
$$

Here's the table for all possible points.

point	probability of point being rolled before 7	probability of 7 rolled before point
4	$3 / 9$	$6 / 9$
5	$4 / 10$	$6 / 10$
6	$5 / 11$	$6 / 11$
8	$5 / 11$	$6 / 11$
9	$4 / 10$	$6 / 10$
10	$3 / 9$	$6 / 9$

Let's make the tree of all possibilities.

The probability of winning a pass line bet is

$$
\begin{aligned}
& \frac{8}{36}+\frac{3}{36} \cdot \frac{3}{9}+\frac{4}{36} \cdot \frac{4}{10}+\frac{5}{36} \cdot \frac{5}{11} \\
& \quad+\frac{5}{36} \cdot \frac{5}{11}+\frac{4}{36} \cdot \frac{4}{10}+\frac{3}{36} \cdot \frac{3}{9} \\
& =\frac{244}{495} \approx 0.4929
\end{aligned}
$$

The probability of losing a pass line bet is

$$
1-\frac{244}{495}=\frac{251}{495} \approx 0.5071
$$

$\underline{\text { Expected value }}\binom{$ Pass line bet }{ is paid $1: 1}$
Suppose you bet $\$ 1$ on the pass line. Let \mathbb{X} be the amount won or lost.

$$
\begin{aligned}
E[Z] & =\underbrace{(\$ 1)\left(\frac{244}{495}\right)}_{W 1 N}+(-\$ 1)\left(\frac{251}{495}\right) \\
& =-\$ \frac{7}{495} \approx-\$ 0.01414 \ldots
\end{aligned}
$$

The $1: 1$ payout is less than the true odds, ie the odds against winning.

$$
\begin{aligned}
\text { True odds } & =\frac{p(\text { losing })}{p(\text { winning })} \\
& =\frac{251 / 495}{244 / 495}=\frac{251}{244}
\end{aligned}
$$

If the casino paid you $\frac{251}{244}: 1$ then the expected value would be

$$
\left(\$ \frac{251}{244}\right)\left(\frac{244}{495}\right)+(-\$ 1)\left(\frac{251}{495}\right)=\$ 0
$$

But then its break even for the casino in the long run.

However, the casino does allow an extra "free odds" bet if a point is made. The free odds bets are paid off at their true odds making them a "fair bet"
[fair bet means expected value 0 , ie casino has no edge]

point	true odds
4	$2: 1$
5	$3: 2$
6	$6: 5$
8	$6: 5$
9	$3: 2$
10	$2: 1$

point is 4

$$
\begin{aligned}
& p(\text { win })=3 / 9 \\
& p(\text { lose })=6 / 9 \\
& \text { odds against }=\text { true odds }=\frac{p(\text { lose })}{p(\text { win })} \\
& =\frac{6 / 9}{3 / 9}=\frac{6}{3}=\frac{2}{1}
\end{aligned}
$$

Ex: Suppose you bet $\$ 10$ on the pass line. The first roll gives point 5 .
Now that the point is made you can make
 a "free odds" bet. Let's say we bet $\$ 20$ more as a free odds bet

come out roll	$r_{0} l l$ 2	roll 3	roll 4
$\therefore \square$	$0 \square$	\square	\square
5	3	4	5
\square	\square		

We would win

$$
\underbrace{(\$ 10)}_{1: 1}+\underbrace{\left(\frac{3}{2}\right)(\$ 20)}_{\text {free odds }}=\$ 40
$$

If we would have lost we would have lost $\$ 30$

