Math 4740 10/25/23

come out coll 2	roll 3	roll 4	roll 5
roll	[°, \ [°,]	(1)	
		6	7
5 2	6	<u> </u>	
5 is the			We lose
5 is the point			7 volled before 5
			was rolled again

Let's calculate the expected value of betting on the pass line.

Sum of Lice	# ways to coll	
Z	l	
3	2	
4	3	
5	4	
6	5	
7	6	
8	5	
9	4	
10	3	
/(2	
12	1	

لــــــــــــــــــــــــــــــــــــ		probability
	roll	8/36
(MIN)	7 or 11	4/36
(LOSE)	2,3, or 12	3/36
	4	4/36
point	5	5/36
is made	6	5/36
with	8	4/36
24/36	1-9	
7/36	10	3/36
	1	

probabilites for

llos tro smos

Let's calculate the probabilities of winning or losing once a point is made Ex: Suppose the come out roll sums to 8. So, 8 is the point.

Now we keep rolling until either an 8 or up.

On an individual roll, let A be the event that the sum is 8 and B be the event that the sum is 7.

If we keep rolling, then ...

• the probability that A occurs before B (ie an 8 is colled before a 7) is

$$\frac{P(A)}{P(A)+P(B)} = \frac{5/36}{5/36+6/36} = \frac{5}{11}$$

The probability that B occurs before A (ie a 7 before an 8)

$$\frac{P(B)}{P(B)+P(A)} = \frac{6/36}{6/36+5/36} = \frac{6}{11}$$

Here's the table for all possible points.

Point	probability of point being rolled before 7	probability of 7 rolled before point
4	3/9	6/9
5	4/10	6/10
6	5 / ()	6/1)
8	5/11	6/11
9	4/10	6/10
10	3/9	6/9

Let's make the tree of all possibilities.

The probability of winning a pass line bet is
$$\frac{8}{36} + \frac{3}{36}, \frac{3}{9} + \frac{4}{36}, \frac{4}{10} + \frac{5}{36}. \frac{5}{11}$$

$$+ \frac{5}{36}, \frac{5}{11} + \frac{4}{36}, \frac{4}{10} + \frac{3}{36}. \frac{3}{9}$$

$$= \frac{244}{495} \approx 0.4929$$

The probability of losing a pass line bet is
$$\frac{244}{495} = \frac{251}{495} \approx 0.5071$$

Expected value (Pass line bet is paid 1:1)

Suppose you bet \$1 on the pass line. Let I be the amount Won or lost.

$$E[X] = (\$1)(\frac{244}{495}) + (-\$1)(\frac{251}{495})$$

$$=$$
 $-\frac{1}{495} \approx -\frac{1}{495} 0.01414...$

1:1 pay out is less The than the true odds, ie odds against Winning. the $odds = \frac{p(losing)}{p(winning)}$ $=\frac{251/495}{244/495}=\frac{251}{244}.$ If the casino paid you 251:1 then the expected value would be $\left(\frac{1}{2}, \frac{251}{244}\right)\left(\frac{244}{495}\right) + \left(-\frac{1}{4}\right)\left(\frac{251}{495}\right) = 10$ NIN

But then its break even for the casino in the long vun.

However, the casino does allow an extra "free odds" bet if a point is made. The free odds bets are paid off at their true odds making them a "fair het" fair het means expected value 0, ie casino hus no edge

point is 4

$$p(win) = \frac{3}{9}$$

$$p(lose) = \frac{6}{9}$$

$$odds \ against = true \ odds = \frac{p(lose)}{p(win)}$$

$$= \frac{\frac{6}{9}}{\frac{3}{9}} = \frac{6}{3} = \frac{2}{1}$$

Ex: Suppose you bet \$10 on the pass line. The first roll gives point 5. Now that the point is made you can make a "free odds" bet. Let's suy we het \$20 More as a free odds het

come out	Coll 2	1011 3	1011 4
	0,	6	1,
5	3	4	5
			MIN

We would win $\left(\frac{3}{2}\right)\left(\frac{3}{2}\right) = \frac{1}{4}$ free odds

If we would have lost we would have lost \$30